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Encoding hard constrained optimization problems into a variational quantum algorithm often turns out to
be a challenging task. In this work, we provide a solution for the class of open-shop scheduling problems
(OSSP), which we achieve by rigorously employing the symmetries of the classical problem.
An established approach for encoding the hard constraints of the closely related traveling salesperson

problem (TSP) into mixer Hamiltonians was recently given by Hadfield et al.’s Quantum Alternating Operator
Ansatz (QAOA). For OSSP, which contains TSP as a special case, we show that desired properties of similarly
constructed mixers can be directly linked to a purely classical object: the group of feasibility-preserving bit
value permutations. We also outline a generic way to construct QAOA-like-mixers for these problems. We
further propose a new variational quantum algorithm that incorporates the underlying group structure more
naturally, and implement our new algorithm for a small OSSP instance on an IBM Q System One. Unlike the
QAOA, our algorithm allows bounding the amount and the domain of parameters necessary to reach every
feasible solution from above: If J jobs should be distributed, we need at most J(J − 1)2/2 parameters.

I. INTRODUCTION

Logistic and scheduling tasks are a major branch
within the collection of hard optimization problems for
relevant industrial applications. A prominent repre-
sentative of those is the open-shop scheduling problem
OSSP(M,T, J) which we consider in this work: Given
M machines with T time slots each, one has to dis-
tribute J jobs such that every job gets performed pre-
cisely once and no position is filled with more than one
job. Not only is OSSP at the mathematical core of many
real world problems, it also prominently incorporates the
well-known traveling salesperson problem (TSP) as a sub-
class, i.e. we have TSP = OSSP(1, T, T ).
Its practical relevance as well as the fact that solving

an instance of OSSP can easily turn out to be a hard task
for classical computers, make OSSP an interesting target
for the application of quantum algorithms. Confronted
with the restricted capabilities of available quantum com-
puter architectures, the class of variational quantum al-
gorithms1–5 (VQAs) is here receiving a particular amount
of attention, since it promises to yield tools for tackling
computational challenges within the NISQ6,7 era.
There are, however, certain hurdles to overcome. The

basic input for applying a VQA to an optimization prob-
lem is an encoding of an objective function f into a multi-
qubit objective Hamiltonian Hf such that - in case of
a minimization problem - optimal solutions correspond
to the smallest expectation value attainable by a quan-
tum state8. In contrast to other popular problems, like
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MAX-CUT or 3-Sat, the OSSP additionally demands us
to not only consider the encoding of an objective func-
tion, but also the encoding of further constraints. As
a consequence, a VQA ideally has to perform its opti-
mization only on a subset of ’allowed/feasible’ quantum
states, i.e. those that respect constraints. The major
contribution of this work is a systematic analysis of sym-
metry structures in OSSP which will enable us to design
a class of VQA algorithms that will, by construction, only
optimize over feasible states.
In general, there are two strategies for handling con-

strained optimization problems:

- softcoded constraints. Any assignment is consid-
ered feasible, but the constraints enter the objec-
tive function as additional terms and penalize as-
signments that were originally infeasible. The mod-
ified objective function results in a more complex
objective Hamiltonian. In exchange, the ground
state search can be conducted in the entire qubit
space without the necessity of preserving feasibil-
ity throughout the routine. A comprehensible in-
troduction and case study using Qiskit and IBM
quantum computers will be published soon9.

- hardcoded constraints. The objective function (and
thus the objective Hamiltonian) is left unmodi-
fied, while the ground state search is restricted
to the subspace corresponding to feasible solu-
tions. Preservation of feasibility is typically en-
sured by additional gates representing the classical
constraints.

Most VQAs such as the variational quantum eigen-
solver3 or the quantum approximate optimization algo-
rithm10 are originally formulated for unconstrained prob-
lems and thus are merely applicable to softcoded in-
stances. However, several case studies indicate that soft-
coding the constraints often either leads to suboptimal
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optimization landscapes or issues with feasibility11–13.
This is why quantum algorithms with built-in possibil-
ities for hardcoding constraints received increasing inter-
est. Most notably, Hadfield et al.14 extended the quan-
tum approximate optimization algorithm to the quan-
tum alternating operator ansatz (QAOA) which can also
be applied to hardcoded constrained optimization prob-
lems. Unlike its predecessor, the QAOA is formulated
with a problem-dependent mixer and is therefore sensi-
tive to different feasibility structures.

Albeit there is a massive catalogue15 of classical con-
straint analysis available for these problems, concrete
instances were mainly heuristically constructed. How-
ever, the underlying feasibility structure was not com-
pletely exploited. One particular interesting construc-
tion for scheduling-type problems is the constraint graph
model16,17. Here the bit strings are identified with ver-
tices, joint by edges corresponding to the constraints.
This allows investigating the feasibility structure with
well-known results from graph theory. Most notably,
one can identify graph automorphisms with feasibility-
preserving bit permutations. With this work, we incor-
porate the whole structure into a more refined view on
the QAOA and also come up with a new VQA design for
OSSP-instances.

In Section III we apply the constraint graph model to
the general OSSP. We first embed the notions of solu-
tions and solution-preserving functions into the graph-
theoretical language. Utilizing this additional point of
view, we fully characterize the group F of feasibility-
preserving bit permutations. Furthermore, we uncover
block structures within the OSSP-constraints. This ulti-
mately reveals that F acts transitively on the set of all
solutions.

In Section IV we then draw the connection between
the classical description of F and specific VQA designs.
Firstly, we review how the QAOA works in general and
proceed with a discussion of its main ingredients. We
give refined definitions for ’phase separator’ and ’mixer’
gates and detail a general construction for suitable mixers
from elements of F . In particular, the transitive action
of F is directly translated into substantial mixing prop-
erties. Second, we introduce a new VQA suitable for
OSSP-instances. It is fundamentally based on decom-
posing bit value permutations into products of transpo-
sitions. In contrast to the QAOA, we can bound the
number of parameters necessary to reach every possible
solutions: While the number of OSSP-solutions is O(J !),
only O(J3) parameters are necessary.

We simulate our new VQA on an OSSP(2,2,4)-instance
without noise. In addition, for an OSSP(1,3,3)-instance,
we implement our VQA on an IBM Q System One and
compare the results with the ones from a noiseless simula-
tor. The results are presented in Section V. We observe
a strong sampling of optimal solution states, but also
residual sampling of ’nearby’ states. That is, for compu-
tational basis states with small Hamming distance from
the optimal state. However, we explain this behavior in

context of our method.

II. PRELIMINARIES

For the readers convenience we will review the basic
notion of combinatorial optimization problems (COPs),
especially the open-shop scheduling problem. We also
briefly introduce the constraint graph model and cover
the very basics of problem encoding onto quantum com-
puters. Throughout this work, we will use the shorthand
[N ] := {1, . . . , N} where N is any natural number.

1. Constrained Combinatorial Optimization

In the following, we restrict to minimization problems,
as maximization tasks may be considered analogously.
Then a generic COP of size N with A constraints is of
the form

min
z∈Z(N)

f(z) s.t. ca(z) = 1, a ∈ [A], (1)

where

- Z(N) := {0, 1}N is the bit strings of length N ,

- f : Z(N) → R is the objective function, and

- ca : Z(N) → {0, 1} are the constraints.

Accordingly, a bit string z is said to fulfill a constraint ca
iff ca(z) = 1. We will refer to COPs formally as triples
(N, f, {ca}). For a given COP C, we define its solution
set as the set of all bit strings, fulfilling every constraint:

S(C) := {z ∈ Z(N) : ca(z) = 1, a ∈ [A]}. (2)

Furthermore, the optimal solution set is the set of all
solution bit strings minimizing f , i.e.,

Smin(C) :=

{
z ∈ S(C) : f(z) = min

z
′∈S(C)

f(z′)

}
⊆ S(C).

(3)

We now examine particular types of constraints: For
two bit strings z, z′ ∈ Z(N) the bit-wise and operation
produces a new bit string z ∧ z

′ ∈ Z(N). |z| denotes
the Hamming weight of z. For a subset I ⊆ [N ] let
zI ∈ Z(N) with zn = 1 iff n ∈ I. The one-hot constraint
and the at-most-one constraint associated with the index
set I are

ζI(z) :=

{
1, if |z ∧ zI | = 1

0, otherwise
and (4)

ηI(z) :=

{
1, if |z ∧ zI | ≤ 1

0, otherwise.
(5)
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2. Open-Shop Scheduling

Let us formally introduce the OSSP, depending on the
three parameters

- M : number of machines,

- T : number of time slots per machine, and

- J : number of jobs.

The J jobs should be distributed to the MT available
positions such that

J: every job gets performed precisely once

P: no position is filled with more than one job.

Note that OSSP(T, 1, T ) has the exact same structure as
the T -city TSP.
In order to bring OSSP :=OSSP(J,M, T ) into the form

(1), we introduce N = MTJ bits, identify [N ] ∼= [M ] ×
[T ]× [J ], and set

zmtj :=

{
1, if job j runs on machine m at time t,

0, otherwise.

(6)

The job assignment constraints J and the position as-
signment constraints P then read

J :
M∑

m=1

T∑

t=1

zmtj = 1, j ∈ [J ] and (7)

P :

J∑

j=1

zmtj ≤ 1, (m, t) ∈ [M ]× [T ]. (8)

Thus J and P are one-hot and at-most-one constraints,
respectively. Namely, we have

J : cj := ζ∆(j)
, j ∈ [J ] and (9)

P : cm,t := η∆(m,t)
, (m, t) ∈ [M ]× [T ] (10)

with job blocks ∆(j) := [M ]×[T ]×{j} and position blocks
∆(m,t) := {m} × {t} × [J ]. The constraints are equiva-
lently captured in the coordinate relation

(m, t, j) ∼ (m′, t′, j′) :⇐⇒ (m = m′ ∧ t = t′) ∨ j = j′.
(11)

Note that ‘∼’ is reflexive and symmetric, but not tran-
sitive. Since we are mainly interested in the constraints,
we leave the objective function f unspecified.
Lastly, the OSSP solution set (expressed as a coordi-

nate set) is explicitly given by
⋃{

{(mj , tj, j) : j ∈ [J ]}

: (m1, t1) 6= · · · 6= (mJ , tJ) ∈ [M ]× [T ]
}
.

(12)

Therefore, it possesses

(MT )!

(MT − J)!
(13)

solutions.

3. Constraint Graph Model

The solution set of a COP C = (N, f, {ca}) can be
further studied by introducing the so-called constraint
graph16,17. First we identify [N ] with a vertex set V =
{v1, . . . , vN}. Moreover, the bit string zI , associated to
the subset I ⊆ [N ], is identified with the subset of ver-
tices VI := {vn : n ∈ I} ⊆ V .

The constraints enter as edges of the graph: Two ver-
tices vm and vn are joint by an edge iff there is a con-
straint that prohibits the two bits zm and zn from taking
the value 1 at the same time. Since this construction
is symmetric, the constraint graph G = (V,E) is undi-
rected. Thus, the edges are unordered pairs of vertices
and we may address an edge e ∈ E with its end points.
Assuming that we have defined a coordinate relation ’∼’
similar to (11), we can express the set of edges simply as

E = {(vm, vn) : m ∼ n}. (14)

For one-hot and at-most-one constraints we can be
more concrete: If ζI ∈ {ca} or ηI ∈ {ca} all vertices
vn with n ∈ I are mutually connected, i.e., they form a
clique in the constraint graph. Figure 1 shows the con-
straint graph of an OSSP(2, 2, 4)-instance.
A solution to C does not violate any constraint. Thus

it corresponds to an independent set (or coclique) in the
associated constraint graph G(C). If C incorporates J
one-hot constraints and some additional at-most-one con-
straints (such as the OSSP), every solution has Hamming
weight J . Accordingly, we call any vertex subset W ⊆ V
a solution to C iff

(i) |W | = J ,

(ii) W is an independent set.

Moreover, we say that a permutation ρ : V → V pre-
serves feasibility iff ρ(W ) is again a solution whenever
W ⊆ V is a solution. We denote with F the set of all
feasibility-preserving permutations. As the composition
of two feasibility-preserving permutations preserves fea-
sibility again and the identity also preserves feasibility,
one readily deduces that F is a subgroup of Sym(V ).
Via the identification of bit strings with vertex subsets,
F can also be interpreted as acting on the solution set
S(C), i.e., on a set of bit strings. However, the notions of
solutions and of F can also be considered independently
of any underlying COP.
We remark that we could alternatively have declared

the complement graph of G(C) as the actual constraint
graph. Then, solutions would correspond to cliques in-
stead of cocliques, but the underlying structure would not
change since a graph and its complement have the same
automorphism group (see Section III). This equivalent
point of view is noteworthy since many results in graph
theory are formulated in terms of cliques. However, we
proceed with our original definition.
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1,1,1 1,2,1 1,1,2 1,2,2 1,1,3 1,2,3 1,1,4 1,2,4

2,1,1 2,2,1 2,1,2 2,2,2 2,1,3 2,2,3 1,1,4 1,2,4

t
m

1 5 2 6 3 7 4 8

7 11 8 12 9 13 10 14

∆(1) ∆(2) ∆(3) ∆(4)

FIG. 1: OSSP(2,2,4) constraint graph. In the above graph, the vertices are labeled using the coordinate system
(m, t, j). In addition, the three job blocks ∆(j), j ∈ [4], are depicted.

4. Encoding on Quantum Computers

Consider a COP C = (N, f, {ca}). The standard en-
coding procedure identifies each bit string z with a com-

putational basis state |z〉 of the N -qubit space H := C2N .
This induces a representation of functions over Z(N) as
linear operators on H. Namely, the classical objective
function f is mapped to an objective Hamiltonian, diag-
onal in the computational basis

f 7→ C :=
∑

z∈Z(N)

f(z) |z〉〈z| . (15)

For unconstrained problems the minimization task is
then equivalent to finding a computational basis state
which is a ground state of C. However, in the constrained
case, the ground state search has to be restricted to the
solution space

S := span{|z〉 : z ∈ S(C)} ( H. (16)

The optimal solution space

Smin := span{|z〉 : z ∈ Smin(C)} (17)

then is a subspace of S and is the eigenspace of C|S ,
corresponding to its smallest eigenvalue. Unlike H, S
does not admit any favorable tensor product structure in
general. This is precisely what makes constrained opti-
mization more challenging on a quantum computer.

III. FEASIBILITY STRUCTURE OF OPEN-SHOP

SCHEDULING

In this chapter we investigate the constraint graph of
an OSSP instance. Our focus lies on determining the
feasibility-preserving subgroup F and its properties. For
brevity, we will not distinguish between the COP and its
constraint graph in what follows.

1. Feasibility-Preserving Graph Automorphisms

Let G = (V,E) be a graph. Recall that a graph au-
tomorphism is a bijection ϕ : V → V such that ϕ as
well as ϕ−1 preserve adjacency. One can actually prove
that any bijective graph homomorphism between G and
itself is already a graph automorphism. We start with
the general observation that graph automorphisms are
always feasibility-preserving.

Proposition 1 ([18]). Let G = (V,E) be a graph with
solution set S. It holds that Aut(G) ⊆ F .

Proof. Let ϕ ∈ Aut(G) and letW ∈ S be arbitrary. Since
ϕ : V → V is bijective, it holds that |ϕ(W )| = |W | = J .
Let ϕ(v), ϕ(w) ∈ ϕ(W ). Since W is an independent set,
it holds that vw /∈ E. With the isomorphism property of
ϕ−1, it follows that ϕ(v)ϕ(w) /∈ E; hence ϕ(W ) is again
an independent set. This shows that Aut(G) ⊆ F .

For general graphs G, F will be a strict superset of
Aut(G). In case of the OSSP graph, however, equality
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holds. In order to prove this we utilize a simple auxiliary
result.

Proposition 2 ([18]). Let G = (V,E) be a graph with
solution set S. If for all non-adjacent v, w ∈ V there
exists W ∈ S such that v, w ∈W , then Aut(G) = F .

Proof. By Proposition 1 it suffices to show that F ⊆
Aut(G). Let ρ ∈ F and v, w ∈ V with ρ(v)ρ(w) /∈ E.
Then, there exists W ∈ S so that ρ(v), ρ(w) ∈ W . Since
F is a group, ρ−1 is also feasibility-preserving, hence
v, w ∈ ρ−1(W ) ∈ S are non-adjacent. Thus the bi-
jective map ρ fulfills (ρ(v)ρ(w) /∈ E =⇒ vw /∈ E)
which is an equivalent characterization of a graph auto-
morphism.

Consider again the OSSP solution set (12). Note
that any pair (m, t, j), (m′, t′, j′) corresponding to non-
adjacent vertices, i.e., (m, t) 6= (m′, t′) and j 6= j′, can be
augmented to form a solution to OSSP. Therefore, we can
apply Proposition 2 and conclude that Aut(OSSP) = F .

2. Determining F

Since the relation (11) is divided in two logically dis-
joint parts, one concludes that the constraint graph is
given by the cartesian product19 of the two graphs KP

and KJ for P := MT , where Kn is the complete graph
with n vertices. With some effort one can show the fol-
lowing theorem.20

Theorem 3. Let G be a graph and H1, . . . , Hk be rep-
resentatives of the isomorphism types of indecomposable
components19 of G.
Let mi be the number of indecomposable components of
G which are isomorphic to Hi. Then, it holds

Aut(G) ∼=
k

×
i=1

(
[Aut(Hi)× · · · ×Aut(Hi)]︸ ︷︷ ︸

mi- times

⋊Smi

)
.

Theorem 3 states that knowing the indecomposable
components of a graph reduces the problem of deter-
mining its automorphism group to the symmetries of the
indecomposable components. In the situation of OSSP
we are mostly done since it is not difficult to show that
complete graphs are indecomposable. The automorphism
group of complete graphs simply is the whole symmetric
group over its vertex set because all vertex permutations
are graph automorphisms. Therefore, the automorphism
group of OSSP is given by

F = Aut(OSSP) ∼=

{
(SJ × SJ)⋊ S2 P = J,

SP × SJ P > J.
(18)

We observe that the busy case (P = J) differs struc-
turally from the non-busy case (P > J). For the latter
case we simply obtain an automorphism group that is the

direct product of position permutations and job permu-
tations. However, in the busy case, we obtain a wreath
product21 structure. There is an additional non-trivial
automorphism which interchanges between position and
jobs. In our subsequent analysis, however, we will con-
sider the subgroup

F ′ := SJ × SJ ≤ (SJ × SJ)⋊ S2 (19)

in order to treat both cases similarly. The concrete action
of an element (σ, τ) ∈ SP × SJ on a coordinate tuple
(m, t, j) is given by

(σ,τ)(m, t, j) = (σ(m, t), τ(j)). (20)

We now argue that SP ×{id} ≤ F acts transitively on
the solution set (12). Let s, s′ ⊂ [M ]×[T ]×[J ] be two so-
lutions, hence there exist m1, . . . ,mJ ,m

′
1, . . . ,m

′
J ∈ [M ]

and t1, . . . , tJ , t
′
1, . . . , t

′
J ∈ [T ] such that

s = {(m1, t1, 1), . . . , (mJ , tJ , J)} and

s′ = {(m′
1, t

′
1, 1), . . . , (m

′
J , t

′
J , J)}.

Since SP acts P -transitively on [M ] × [T ] and P ≥ J ,
there exists σ ∈ SP such that

σ(mj , tj) = (m′
j , t

′
j)

holds for all j ∈ [J ], i.e. (σ,id)s = s′. Thus we have just
concluded

Theorem 4 ([18, 22]). The action of F on the solution
set S is transitive for the OSSP.

3. Block Structure

We further characterize the group action of F (resp.
F ′) via block systems. Given a group G acting on some
set X , a subset ∆ ⊂ X with 1 < |∆| < |X | is called a
block23 of G iff

∀g ∈ G : g∆ = ∆ ∨ g∆ ∩∆ = ∅.

A partition of X into blocks of G is then called a block
system.
It is immediately clear that the collection of job blocks

∆(j) and of position blocks ∆(m,t) each form a block sys-
tem of F (resp. F ′). Furthermore, one readily verifies
that F (resp. F ′) acts transitively on [M ] × [T ] × [J ].
Recall that the job and position blocks result from one-
hot and at-most-one constraints and are therefore cliques
in the constraint graph. That is, all vertices in a block
are adjacent, which implies that a solution is a subset
s ⊂ [M ]× [T ]× [J ] such that each element in s belongs
to exactly one block in each of the two partitions into
position blocks and job blocks. In both cases this yields
a bijection between elements in s and the job blocks. In
the busy case there is an additional bijection between el-
ements in s and the position block while in the non-busy
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1,1,1 1,2,1 1,1,2 1,2,2 1,1,3 1,2,3 1,1,4 1,2,4
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FIG. 2: OSSP(2,2,4) constraint graph with feasible solution. The colored vertices are a maximally independent set
and thus constitute a feasible solution.

case s only occupies a subset of all position blocks. Since
each element of a solution exactly corresponds to one po-
sition and to one job block, we can capture the action of
F (resp. F ′) on the solution set S equivalently as its ac-
tion on the blocks. Here, [23, Proposition 1.37] states
that if the blocks are maximal with respect to inclusion
(which they are here), then the block-wise action of F is
primitive, i.e., it does not possess blocks on its own.
We lastly focus on the busy case. Since the normal

action of SJ on J elements is sharply transitive, for ev-
ery two blocks there is exactly one element in SJ which
maps between them. The solutions are now precisely the
J ! permutations of these blocks. Furthermore, each of
the two copies of SJ is a stabilizer for one of the block
structures and is also a normal subgroup of F ′. There-
fore we can identify the solutions with one of those sub-
groups and get a regular23 group action. Note that for
the non-busy case the unique identification of solutions
with elements of SP or SJ is not possible as one has

|SJ | = J ! <
P !

(P − J)!
< P ! = |SP |. (21)

We leave it as an open problem to find and characterize
subgroups of SP that are in bijection with the solution
set.

IV. DESIGNS FOR VARIATIONAL QUANTUM

ALGORITHMS

In this chapter, we utilize our knowledge about feasi-
bility-preserving permutations to study VQAs. The un-
derlying connection is due to the fact that ’classical’ oper-
ations on bit strings may be considered as ’quantum’ per-
mutation operators acting on the associated qubit space
H.
Consider a COP C. Any group G that acts on Z(N)
(resp. on S(C)) also acts on the computational basis
(resp. on the feasible computational basis states) via

g |z〉 := |gz〉 , g ∈ G. (22)

By linearity, we can extend this action to the whole space
H (resp. S), yielding linear operators ρ(g) ∈ L(H) (resp.

ρS(g) ∈ L(S)) which are simply permutation matrices in
the computational basis. In group representation theory
this construction is known as the permutation represen-
tation24.

1. Relation to the QAOA

Consider a COP with encoded objective Hamiltonian
C, solution space S ⊆ H, and optimal solution space
Smin ⊆ S. Starting from a feasible initial state |ι〉 ∈ S, we
alternately apply parametrized ’phase separator’ gates
UP(γ) and ’mixer’ gates UM(β) p times, where p is the
circuit depth. This yields a parametrized trial state

|~β,~γ〉 :=

(
p∏

o=1

UM(βo)UP(γo)

)
|ι〉 . (23)

After preparing |~β,~γ〉, we evaluate

Fp(~β,~γ) := 〈~β,~γ|C|~β,~γ〉 (24)

on the quantum computer and pass this quantity to a

classical optimizer which updates the parameters ~β, ~γ in

order to minimize Fp(~β,~γ).

Phase Separator

The unitary phase separator is supposed to render the
classical objective function’s behavior but is technically
merely required to be diagonal in the computational ba-
sis. We want to be more precise and suggest the following
definition.

Definition 5. A HamiltonianH is called a phase separa-
tor Hamiltonian iff it fulfills the following two conditions:

(i) H is diagonal in the computational basis.

(ii) The eigenspace ofH |S corresponding to its smallest
eigenvalue is Smin.
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Then

UP(H, γ) := e−iγH (25)

is the corresponding (parametrized) phase separator.

The canonical choice for a phase separator Hamilto-
nian is the objective Hamiltonian C. However, there
might be decent approximations of C which are easier to
implement and still preserve the optimal solution space.
Since the phase separator is itself diagonal in the com-
putational basis it trivially leaves the solution space S
invariant!

Mixer

The unitary mixer is supposed to ’preserve’ and ’ex-
plore’ the solution space S. Preservation of S simply
means that UM(β)(S) ⊆ S should hold for all β ∈ R. The
exploring condition is defined as follows: For all z, z′ ∈ S,
there should exist a power r ∈ N and a parameter value
β ∈ R so that 〈z|U r

M(β)|z′〉 6= 0.
Our aim for a refined definition is now to mimic the two
properties of the original QAOA mixer Hamiltonian

B =

N∑

n=1

σ(n)
x (26)

for unconstrained problems, but tailored to the con-
strained case. B, considered as a matrix in the com-
putational basis, is component-wise non-negative and ir-
reducible. Irreducibility means that the matrix B does
not leave any non-trivial coordinate subspace invariant.
That is, the only two subspaces of H which are a linear
span of computational basis states and are left invariant
under B are {0} and H. For brevity, we will address
every linear span of computational basis states as a co-
ordinate subspace. Our crucial observation is that the
concept of irreducibility is indeed a fundamental mixing
property which should be preserved in the constrained
case25.
In order to establish also ’sequential’ mixers14, we uti-

lize the following result which can be proved by con-
sidering each Hamiltonian as the adjacency matrix of a
graph.26

Proposition 6. Let {Hi}i∈I ⊂ L(H), 0 < |I| <∞, be a
family of Hamiltonians, component-wise non-negative in
the computational basis, such that Hi(S) ⊆ S holds for all
i ∈ I. Then the following two statements are equivalent:

(i) Any coordinate subspace X ⊆ S that is left invari-
ant under every Hi|S , is trivial.

(ii)
(∑

i∈I Hi

)
|S ∈ L(S) is irreducible in the computa-

tional basis.

Definition 7. A family of Hamiltonians H = {Hi}i∈I ⊂
L(H) fulfilling the conditions in Proposition 6 is called a

mixing family. The corresponding (parametrized) simul-
taneous mixer is defined as

UM,0(H, β) := e−iβ
∑

i∈I Hi . (27)

Specifying a permutation σ ∈ S(I), the corresponding
(parametrized) sequential mixer is defined as

UM,σ(H, β) :=
∏

i∈I

e−iβHσ(i) . (28)

We present here a general method for scheduling-
type problems for obtaining suitable mixers from the
feasibility-preserving subgroup F . Following the permu-
tation representation, we identify each g ∈ F via its ac-
tion on Z(N) with a linear operator ρ(g) ∈ L(H), and
via its restricted action on S(C) with a linear operator
ρS(g) ∈ L(S). Both representations yield permutation
matrices in the computational basis. In the same way we
have identified S(C) with S, we may also identify every
subset of solutions with coordinate subspaces of S. Then
it readily follows that F acts transitively on S(C) iff the
only coordinate subspaces of S that are left invariant by
every ρS(g), g ∈ F , are {0} and S.
As we have shown in Section III, the action of F on

S(OSSP) is indeed transitive. In addition, F consists
of bit (value) permutations. Thus, the operator analogs
ρ(F ) respect the tensor product structure of the qubit
space H, namely

ρ(g)

N⊗

n=1

|ψn〉 =
N⊗

n=1

|ψg(n)〉 . (29)

Starting from the unitary operators ρ(F ) = {Wg}g∈F ,
we construct a family of Hamiltonians by taking suitable
matrix logarithms {iL(Wg)}g∈F .

27 A direct calculation
yields that A ⊆ H is a W -invariant subspace iff A is an
L(W )-invariant subspace. Thus, the constructed family
{iL(Wg)}g∈F admits the just introduced mixing prop-
erty and can therefore be used to build simultaneous and
sequential mixers.

2. A Quantum Group Optimization Algorithm

We propose a VQA tailored to busy OSSP-instances22,
thus conceptually considering the TSP. Namely, given a
complete graph G = (V,E) (not the constraint graph!)
with |V | = J vertices, we consider the quadratic objective
function

f : Z(J2) → R

z 7→
∑

{u,v}∈E

duv

J∑

j=1

(zu,jzv,j+1 + zv,jzu,j+1),

(30)

where duv is the distance between city u and v (i.e., the
weight of the edge incident with u and v). Then zu,j = 1
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means that city v is visited at time j28. Our method
above gives now a way to describe the whole solution set
S of this problem with a bit-to-qubit mapping. Namely,
the set of all solutions is identified with the symmetric
group SJ . Fixing one solution s ∈ S, we can consider the
problem of optimizing f equivalently as optimizing

f̃ : SJ → R; g 7→ f(gs). (31)

Thus the TSP and, more generally, any generic busy
OSSP-instance are, in fact, optimization problems over
symmetric groups. The underlying group structure can
be exploited in the following way: Consider an arbitrary
σ ∈ SJ . There is a well-known representation as a prod-

uct of at most J(J−1)
2 transpositions29. We can further

write every transposition as a product of some of the J−1
specific transpositions τ1 = (1, 2), . . ., τJ−1 = (J − 1, J)
in SJ . In summary, we find for σ ∈ SJ a binary vector

r(σ) ∈ {0, 1}
J(J−1)2

2 such that

σ =

J(J−1)
2∏

k=1

(τ
r
(σ)
k1

1 · · · τ
r
(σ)
kJ−1

J−1 ). (32)

Recall that the elements of SJ simultaneously act on
multiple vertices, namely those lying in different posi-
tion blocks, but having the same job coordinate. The
representation of a transposition τi as elements in L(H)
thus yields a sum of disjoint SWAP gates, each SWAP
gate corresponding to one position block:

τi =̂
P∑

p=1

SWAP
(p)
(i,i+1) =: Bi.

Here, SWAP
(p)
(i,i′) interchanges the i-th and the i′-th qubit

in the p-th position block. Since all SWAP gates are
also hermitian, the operator Bi is again hermitian. In-

troducing J(J−1)2

2 parameters and exponentiating each
transposition operator Bi then yields the following im-
plementation of σ as a parameterized quantum circuit:

U(~β ) =

J(J−1)
2∏

k=1

eiβk1
B1 · · · eiβkJ−1

BJ−1 . (33)

Due to the fact that eiγSWAP is equal to SWAP with
a global phase i for γ = π

2 and 1 for γ = 0, we
can directly transfer Theorem 4 to the gate implemen-
tation of permutations in SJ to conclude that every so-

lution is reachable with a circuit U(~β ) for appropriate

~β ∈ [0, π2 ]
J(J−1)2

2 . Therefore, the number of gates (not

decomposed) is within O(J3).
The resulting VQA consists out of the following steps:

1. Start in a solution state |ι〉 ∈ S.

2. Apply the parameterized quantum circuit (33).

3. Variationally optimize ~β ∈ [0, π2 ]
J(J−1)2

2 using a
classical optimization rule.

4. Measure the final outcome state in the computa-
tional basis.

Furthermore, the parameter space is always the same
and especially compact, regardless of the objective func-
tion f . This has to be seen in contrast to general QAOA-
mixers for which no comparable restriction of the neces-
sary parameter space is possible. Thus, in our case, sam-
pling methods for parameter adaptation like the sampled
gradient descent (compare Section V2) are particularly
powerful since they eventually grant access to the whole
compact parameter space.
The identification of the set of feasible solutions with

SJ further suggests a dynamic programming30 ansatz:
Iteratively optimize over subgroup series of the form

1 = 〈τi : i ∈ I0〉 ≤ . . . ≤ 〈τi : i ∈ In〉 = SJ , (34)

with ascending index sets I0 ⊂ . . . ⊂ In, by restricting to
the set of corresponding mixers Bi with i ∈ Ik, k ∈ [n].

V. NUMERICAL RESULTS

1. Noiseless Implementation

First, we demonstrate our just introduced VQA with-
out noise on an OSSP(2,2,4)-instance. Figure 1 displays
its constraint graph. The group of job permutations is
thus given by SJ = S4.
After assigning a bit to each of the 16 elements in [2]×

[2]× [4] via

(m, t, j) 7→ 4(m− 1) + 2(t− 1) + j, (35)

we explicitly generate SJ with τ1, τ2, and τ3:

SJ = 〈(1, 2)(5, 6)(9, 10)(13, 14),

(2, 3)(6, 7)(10, 11)(14, 15),

(3, 4)(7, 8)(11, 12)(15, 16)〉.

(36)

Consequently, we have to implement three distinct mixer
Hamiltonians B1, B2, B3. As a concrete example, con-
sider the permutation

(1, 2)(5, 6)(9, 10)(13, 14)

which corresponds to the Hamiltonian

B1 =
4∑

p=1

SWAP
(p)
(1,2)

= SWAP(1,2) +SWAP(5,6)

+ SWAP(9,10) +SWAP(13,14) .
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bit string value

0010000110000100 5

0010000101001000 5

0010010000011000 7

0100000100101000 7

0010100000010100 7

0100001000011000 8

0100000110000010 8

0010100001000001 8

0010010010000001 8

1000000100100100 8

0001001010000100 9

0001001001001000 9

1000001000010100 9

1000000101000010 9

0100001010000001 9

0100100000100001 10

0100100000010010 10

0001010000101000 10

0001100000100100 10

1000001001000001 10

1000010000100001 11

1000010000010010 11

0001100001000010 11

0001010010000010 11

TABLE I: Every solution bit strings to OSSP(2,2,4) is
listed with its objective value under the objective

function (37) with weights (38).

Using again the enumeration (35), we consider the fol-
lowing objective function

f : {0, 1}16 → R, z 7→
∑

m,t,j

ωmtjzmtj . (37)

We collect the weights in two machine-specific weight ma-
trices

(ω)1tj =

(
3 2 2 3
2 2 3 0

)
, (ω)2tj =

(
2 2 4 2
1 1 4 2

)
. (38)

Table I displays the objective values for all feasible solu-
tions of the OSSP(2,2,4).
In addition to the just constructed mixers, we also im-

plement the QAOA-phase separator. Mixer and phase
separator together result in the following parametrized
quantum circuit

U(~β,~γ) = eiβ1B1eiβ2B2eiβ3B3eiγ1C︸ ︷︷ ︸
1

·

× eiβ4B1eiβ5B2eiβ6B3eiγ2C︸ ︷︷ ︸
2

· · · eiβ16B1eiβ17B2eiβ18B3eiγ6C︸ ︷︷ ︸
6

.

(39)

Choosing an initial state z0, the variational optimization
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FIG. 3: Sampling amplitudes of bit strings. One of the
optimal solutions dominates the sampling; all other

computational basis states are suppressed.

task now reads

min{〈z0|U(~β,~γ)∗ C U(~β,~γ)|z0〉 : ~β ∈ [0, π/2]18, ~γ ∈ R6}
(40)

As a concrete feasible initial state, we choose

|z0〉 = |1000010000100001〉 .

The whole quantum circuit is implemented in Qiskit. For
the classical parameter adaptation we use the renowned
COBYLA as a global optimization routine. Figure 3 and
Table II display the numerical results22.
We observe a dominating sampling of one of the opti-

mal solution states (791 out of 1024 counts), indicating
a fast convergence behavior. Bit strings which have a
small Hamming distance to it are also sampled, but with
a significantly smaller amplitude. This is due to the fact
that the construction of the optimal computational basis
state is merely approximate. Any deviation from it is
reflected in the measurement statistics because the pro-
jective measurements do not reliably give the correct bit
values in this case. These byproducts are mostly infeasi-
ble states, which is a direct consequence of the underlying
feasibility structure: Distinct solution bit strings differ in,
at least, four positions since if one reassigns one job to a
position occupied by another job, one also has to reassign
the latter one. Obtaining distributions with some non-
solution bit strings in hardcoded instances is, however,
very common as the final measurement is insensitive to
any feasibility structure.
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bit string counts Hamming distance is solution?

0010000101001000 781 0 true

0010000101000100 95 2 false

0010000110001000 74 2 false

0010000100101000 15 2 false

0010000110000100 12 4 true

0100000101001000 10 2 false

0010010001001000 9 2 false

0010000101000010 7 2 false

1000000101001000 6 2 false

0010000100011000 6 2 false

0010010001000100 3 4 false

1000000110001000 1 4 false

0010010010001000 1 4 false

0010100001001000 1 2 false

0010000100100001 1 4 false

0010000110000010 1 4 false

0010000100010100 1 4 false

TABLE II: Measured bit strings with their respective
counts. The total amount of counts is 1024. In

addition, the Hamming distance to the most frequently
sampled bit string 0010000101001000 is shown as well

as whether a given bit string is feasible or not.

2. Implementation With Noise

Second, we consider an OSSP(1,3,3)-instance, i.e. a
TSP instance with 3 cities, and demonstrate our VQA
on a real (noisy) quantum hardware: the IBM Q Sys-
tem One. In addition, we simulate the application with
a classical computer.
The group of job permutations is given by SJ = S3.

Since we only have one machine, we simply drop the ma-
chine coordinate and consider the enumeration

(t, j) 7→ 3(t− 1) + j. (41)

Thus, the generators τ1 and τ2 of SJ read

SJ = 〈(1, 2)(4, 5)(7, 8),

(2, 3)(5, 6)(8, 9)〉.
(42)

We further consider the objective function

f : {0, 1}9 → R, z 7→
∑

t,j

ωtjztj . (43)

with weight matrix

(ω)tj =




3 2 2

2 2 3

1 2 2


 . (44)

Both mixer Hamiltonians B1 and B2 together with

bit string value

001010100 5

001100010 6

010001100 6

010100001 7

100001010 8

100010001 8

TABLE III: Every solution bit strings to OSSP(3,1,3) is
listed with its objective value under the objective

function (43) with weights (44).

the QAOA-phase separator constitute the parametrized
quantum circuit

U(~β,~γ) = eiβ1B1eiβ2B2eiγ1C︸ ︷︷ ︸
1

eiβ3B1eiβ4B2eiγ2C︸ ︷︷ ︸
2

× eiβ5B1eiβ6B2eiγ3C︸ ︷︷ ︸
3

.
(45)

However, this circuit is yet too deep to be fully imple-
mented on the quantum device. Therefore, we restrict
our circuit to the first factor of (45). Choosing the feasi-
ble initial state

|z0〉 = |100010001〉 ,

we can predict which feasible states are actually accessi-
ble in this setting. Restricting to one factor in (45) clas-
sically corresponds to having only access to four group
elements: id, τ1, τ2, and τ1τ2. Their application to z0

yields

id
z0 = z0,

τ1
z0 = 010100001,

τ2
z0 = 100001010, τ1τ2

z0 = 010001100.
(46)

According to Table III, the colored bit string is thus the
optimal accessible feasible solution.
For the actual parameter adaptation we use sampled

gradient descent:

1. Construct a ball Bi ⊂ [0, π/2]3 around some pa-

rameter values ~βi.

2. Sample new parameter values uniformly from Bi.

3. Apply the correspondingly parametrized circuit to
the initial state and measure the expectation value
of C.

4. Choose parameter values ~βi+1 from the sample
minimizing the expectation value and repeat step
1 with i 7→ i+ 1.

The size of the constructed ball Bi is adapted in each
step i: The steeper the drop in expectation values, the
smaller the radius becomes. For our numerical execution
we choose random initial parameters and a sample size
of 40 in each step.
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FIG. 4: First iteration with sampled gradient descent.
The initial state |z0〉, corresponding to a maximum of

the objective function, is already barely sampled.
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FIG. 5: Second iteration with sampled gradient descent.
The local optimum is now also sampled on the IBM Q

System One, while its simulated amplitude is also
increasing.

Figure 4-Figure 8 show the amplitudes obtained after
each round of the sampled gradient descent. After five it-
erations we indeed observe a dominating sampling of the
local optimum. There remains, however, a noisy back-
ground both in the simulation as well as on the IBM Q
System One. We again observe increased amplitudes for
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FIG. 6: Third iteration with sampled gradient descent.
The amplitude of the local optimum further increases in

both cases. Computational basis states with small
Hamming distance are also more frequently sampled.

computational basis states which have small Hamming
distance to the local optimum.

VI. OUTLOOK AND CONCLUSION

In this paper we presented a general approach for char-
acterizing the feasibility structure of job-shop scheduling
problems. We utilized the constraint graph model as a
general interplay between graph and group theory for
determining symmetries for certain problem instances.
This additional perspective allowed us to find feasibility-
preserving mappings as graph automorphisms. For the
open-shop case, we calculated the entire group of such
feasibility-preserving functions and proved that it equals
the automorphism group of the constraint graph. This
is a very strong statement which unfortunately is not
transferable to all other types of job-shop scheduling
problems. For example, for a generic flexible job-shop
instance, where each job is subdivided into an ordered
sequence of operations, we can similarly construct a con-
straint graph and study its automorphism group. How-
ever, in this case, due to additional edges which break
certain symmetries, the automorphism group is gener-
ally significantly smaller. In many cases, there is no pos-
sible identification between group elements and solutions
anymore. The remaining symmetries can still be incor-
porated into QAOA-mixers but have to be supplemented
with additional elements that do not correspond to clas-
sical bit permutations.
Let us emphasize one more time that the OSSP is



12

0
1
0
0
0
1
0
0
1

0
1
0
0
0
1
0
1
0

0
1
0
0
0
1
1
0
0

0
1
0
1
0
0
0
0
1

0
1
0
1
0
0
1
0
0

0
1
1
0
0
1
1
0
0

re
st

0

150

300

450

600

co
u
n
ts

simulator

IBM Q System One

FIG. 7: Fourth iteration with sampled gradient descent.
Both the simulated and the real amplitude of the local

minimum start to dominate the histogram.
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FIG. 8: Fifth iteration with sampled gradient descent.
The simulated amplitude of the local optimum clearly
dominates the histogram. On the real quantum device,

its amplitude is also dominating, but with a more
intense noisy background.

equivalent to optimizing over a particular group (cf.
(31)). We solved this type of problem by representing a
symmetric group with exponentials of SWAP gates. The
resulting algorithm has the advantage that the number
of gates is polynomial in the problem size. The prior
discussed transitive action of the group on the solution
set guarantees that all possible solutions can be reached.
In principle, we can generalize this procedure to an ar-
bitrary (finite) group G, acting transitively on a given
set of solutions S. Then, the permutation representa-
tion would still yield permutation operators on the qubit
space which, however, will not correspond to actual qubit
permutations. It would be interesting to characterize in
the future the obtained operators and the performance
of our algorithm for more exotic cases. However, opera-
tors that do not respect the tensor product structure of
H will be generally very difficult to implement.
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19W. Imrich and S. Klavžar, Product graphs (Wiley-Interscience,
New York, 2000).

20We owe the theorem and its proof to personal correspondence
with Benjamin Sambale.

21J. J. Roman, An Introduction to the Theory of Groups

(Springer New York, NY, 1995).

22G. Koßmann, A Quantum Algorithm with Group Theory, Mas-
ter’s thesis, Leibniz Universität Hannover (2023).

23B. Sambale, Endliche Permutationsgruppen (Springer Fachme-
dien Wiesbaden, 2017).

24B. E. Sagan, The Symmetric Group (Springer New York, NY,
2001).

25L. Binkowski, G. Koßmann, T. Ziegler, and R. Schwonnek, in
preparation.

26More precisely, in a first step, one can interpret the matrix rep-
resentation of each Hamiltonian as the adjacency matrix of a
weighted directed graph. However, since we are not interested
in actual weights and all matrices are hermitian, it suffices to
consider simply a graph. Furthermore, since all components are
non-negative, no cancellation happens when summing up all the
matrices18.

27Since we only have finitely many unitary matrices Wg, we can
always find a common branch L of the complex logarithm for the
union of all their eigenvalues.

28S. Hadfield, Quantum Algorithms for Scientific Computing and
Approximate Optimization (2018), arXiv:1805.03265 [quant-ph].

29J. E. Humphreys, Reflection Groups and Coxeter Groups (Cam-
bridge University Press, 1992).

30T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, In-
troduction to Algorithms, 4th Edition (MIT Press and McGrwa-
Hill, 2022).

https://arxiv.org/abs/2202.06782
https://arxiv.org/abs/1908.02210
https://arxiv.org/abs/2108.08805
https://doi.org/10.3390/a12020034
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1007/978-3-658-17597-9
https://doi.org/10.1007/978-1-4757-6804-6
https://arxiv.org/abs/1805.03265
https://www.ebook.de/de/product/4286037/james_e_humphreys_reflection_groups_and_coxeter_group.html

