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Abstract

We introduce a novel quantum computing heuristic for solving the
irregular strip packing problem, a significant challenge in optimiz-
ing material usage across various industries. This problem involves
arranging a set of irregular polygonal pieces within a fixed-height,
rectangular container to minimize waste. Traditional methods heavily
rely on manual optimization by specialists, highlighting the complex-
ity and computational difficulty of achieving quasi-optimal layouts.
The proposed algorithm employs a quantum-inspired heuristic that
decomposes the strip packing problem into two sub-problems: order-
ing pieces via the traveling salesman problem and spatially arranging
them in a rectangle packing problem. This strategy facilitates a novel
application of quantum computing to industrial optimization, aim-
ing to minimize waste and enhance material efficiency. Experimental
evaluations using both classical and quantum computational meth-
ods demonstrate the algorithm’s efficacy. We evaluate the algorithm’s
performance using the quantum approximate optimization algorithm
and the quantum alternating operator ansatz, through simulations
and real quantum computers, and compare it to classical approaches.

Keywords: quantum computing, QAOA, quantum optimization, strip
packing problem, Traveling Salesman Problem, irregular packing problem
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1 Introduction

The irregular strip packing problem is a challenging and economically signif-
icant issue that involves fitting a set of polygonal pieces into a fixed-height,
rectangular container in a manner that minimizes unused space, or waste. This
task has broad implications, affecting industries ranging from fashion to au-
tomotive and electronics, where efficient material use is crucial for both cost
reduction and environmental sustainability. Traditional approaches often rely
on the expertise of specialists using CAD systems to achieve quasi-optimal
layouts, highlighting the problem’s complexity from both combinatorial and
geometric perspectives. The quality of the placements produced by these spe-
cialist workers is high and according to [1], automatic solutions can only barely
match this level of quality.

In this work, we introduce the Opus Incertum algorithm, a quantum com-
puting (QC) heuristic designed to efficiently tackle the irregular strip packing
problem. While quantum optimization is a highly active field with applica-
tions across a wide range of problems [2], purely geometric problems such as
the strip packing problem have received comparatively less attention in this
domain. To make the problem tractable for QC, we decompose it into two sub-
problems, a Traveling Salesman Problem (TSP) which shares similarities with
the strip packing problem in terms of computational difficulty and a rectangu-
lar packing problem. The TSP can then be solved using QC algorithms such as
the Quantum Approximate Optimization Algorithm [3] and a variation thereof
called Quantum Alternating Operator Ansatz [4]. Our method works towards
applying QC to industrial optimization, offering a promising solution to the
irregular strip packing problem by minimizing waste and optimizing material
usage.

The remainder of the article is organised as follows. Section 2 is dedicated
to related work. Section 3 formally introduces the mathematical formulation of
the problem. In Section 4, we introduce a QC-based heuristic. We then present
in Section 5 the experimental results of our heuristic when executed on such
computers with different methods available and compare the performance with
existing classical methods. We finally draw our conclusions in Section 6.

2 Related Work

A recent survey of mathematical models proposed in the last decades for nest-
ing problems can be found in [5]. The integer linear programming models of
[6, 7] use a grid for the discrete positioning of pieces. The mixed-integer lin-
ear programming models of [8–13] assume continuous positioning of the pieces
in the container. [14] introduces a mixed-integer linear programming model
with semi-continuous positioning, i.e., continuous positioning on one axis and
discrete positioning on the other. [15] is the first paper to tackle the problem
of packing irregular shapes with unrestricted rotations. Other mathematical
models that have been proposed are non-linear programming and constraint
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programming models. All these exact approaches which assume the pieces are
polygons allow to find the optimal solution, but only work for small problems.

One of the main difficulties in solving the strip packing problem or other
nesting problems is the necessity to represent the problem and perform geo-
metrical computations such as checking if pieces overlap or fit entirely inside
the container. [16] provides a survey of the geometric tools available. These
include pixel/ raster methods [17–19], direct trigonometry and the D-function
[20–23], the no-fit polygon [16, 22, 24–26] and phi-functions [27, 28].

Heuristic methods have been designed in order to solve large instances
of the irregular strip packing problem. An often used heuristic is the First
Fit Decreasing Algorithm [29], which consists of packing the pieces into bins
in the order of decreasing size. The bottom-left heuristic proposed by [30]
consists of sequentially placing the pieces in as far as possible in the bottom-left
corner without overlapping them with those previously positioned. An initial
solution is usually obtained with the bottom-left heuristic and then improved
via heuristics, meta-heuristics and compact and separation models. According
to [5], some of the best results are obtained with the methods of [31–36].

[37] was the first to propose a quantum inspired algorithm for solving the
one-dimensional bin packing problem, where a set of items must be packed
into a minimum number of bins. [38, 39] proposed a quantum-classical hybrid
approach to solve the one-dimensional bin packing problem using quantum
annealing. [40] proposed an Ising model mapping to solve the two-dimensional
regular packing problem, in which all pieces are assumed to have a rectangular
shape. Using a quantum annealer, they were able to solve problem instances
with up to eighteen rectangles.

3 The irregular strip packing problem

The irregular strip packing problem formally involves allocating a set of N
pieces P0, P1, . . . , PN−1 with polygonal shapes into a rectangular container
C with a fixed height H and variable length L. The pieces must be placed
completely inside the container in such a way that they do not overlap. The
pieces can be placed at any continuous location and can be freely oriented.
The objective is to minimize the length L of the container. Since all pieces
must be placed inside the container and the height is fixed, minimizing the
container length is equivalent to minimizing the unused area of the container,
i.e., the surface that is unoccupied by the pieces. The unoccupied surface can
be interpreted as waste and the amount of waste can be quantified either by
the area W of that surface or by the ratio between W and the total area H×L
of the container. An example of a set with eight pieces is shown in Fig. 1(a).
From a mathematical perspective, this problem as well as other irregular or
regular packing problems, combine the combinatorial hardness of cutting and
packing problems with the computational difficulty of enforcing the geometric
non-overlap and containment constraints. A quasi-optimal layout for this set
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of eight pieces in a container with fixed height which has been designed by
hand is provided in Fig. 1(b).

(a) (b)

Figure 1: (a) Set of eight pieces to pack. (b) Example of a hand-designed
placement of the eight pieces.

4 The Opus Incertum Algorithm

Mathematical models proposed in the literature are solved monolithically, i.e.,
without use of decomposition methods thereby limiting the size of the problems
that can be solved. Regular packing (i.e. packing rectangular-shaped pieces)
is an exception and constitutes a much simpler problem which can be solved
efficiently. To make use of this, we propose a heuristic method where the
irregular packing problem is reduced to a regular packing problem. We call
the algorithm Opus Incertum Algorithm1. It consists of the following steps:

1. Compute the geometrical compatibility between pieces
2. Generate groups of geometrically compatible pieces
3. Order the pieces in each group (corresponds to solving a TSP)
4. Spatially arrange the pieces in each group into a compact rectangle
5. Generate candidate partitions of the set of pieces
6. Solve the rectangle packing problem for each partition
7. Local optimization of the layout obtained for each partition
8. Global optimization of the best layout
9. Return the best layout

4.1 Definitions and details

In the following we explain each of these steps in detail and introduce the
necessary definitions. The final algorithm is summarized in Algorithm 1.

1Opus Incertum, is a reference to an ancient Roman constructing technique of the same name
that consists of irregularly shaped and randomly placed uncut stones inserted in a core of concrete.
Vitruvius, in De architectura (Ten books on Architecture), favours opus incertum, deriding opus
reticulatum (a similar technique using small pyramid-shaped instead of irregular stones) as more
expensive and structurally of inferior quality.
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4.1.1 Geometrical compatibility between pieces

Let us consider two pieces Pi and Pj . Here, we assume that the position of
Pi is fixed and denote (r, θ, ϕ) a placement with polar coordinates (r, θ) of the
reference point of Pj with respect to Pi and ϕ the orientation of Pj . We want to
find a placement (r, θ, ϕ) of Pj that avoids an overlap with Pi while minimizing
the waste. To make this statement mathematically precise, we define the waste
as the surface that is inside the convex hull of the set of vertices of the pieces.
The optimal placement is then the one that avoids overlapping and yields
a convex hull with minimum area. We introduce the concept of the no-fit
function. The no-fit function of two pieces Pi and Pj is the function NFFPi,Pj

that takes as input a polar angle θ and returns the radius r and orientation
ϕ to optimally place Pj with respect to Pi given the rotation angle θ. Once
computed and stored, the no-fit function allows to find the placement that
yields the convex hull with minimum area. The no-fit function is given by

NFFPi,Pj
(θ) = argmin

r∈R,ϕ∈Φ
{area(CH[Pi, Pj(r, θ, ϕ)]) |Pi ∩ Pj(r, θ, ϕ) = ∅} . (1)

Here, CH(Pi, Pj) denotes the convex hull where the optimal convex hull
CH∗(Pi, Pj) is given by

CH∗(Pi, Pj) := argmin
θ∈Θ

{
area(CH[Pi, Pj(r, θ, ϕ)]) | (r, ϕ) = NFFPi,Pj (θ)

}
.

(2)
Note that the absolute position of Pi is irrelevant and the relative position
of Pj is implicitly given by the no-fit function. In the definitions above, Φ,Θ
are discrete sets of angles and R is a set of radii. For more information see
Sec. 4.1.4.

After optimally placing Pj relative to Pi, the waste can be quantified by
the difference between the area of the convex hull and the area of the two
pieces. We will denote the waste as di,j = d(Pi, Pj), since we will later relate
this quantity to the distance between two cities i and j in a TSP. With the
definitions above, the waste is given by

di,j = d(Pi, Pj) = area[CH∗(Pi, Pj)]− area(Pi)− area(Pj) .

Furthermore, we define the following measure, which we will refer to as
geometrical incompatibility between Pi and Pj .

Definition 1 (Distance and geometrical incompatibility/compatibility)

gi(Pi, Pj) =
d(Pi, Pj)

area(CH[Pi, Pj(r, θ, ϕ)])
(3)

gc(Pi, Pj) = 1− gi(Pi, Pj) (4)
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Examples of distances are given in Fig. 2. The geometrical incompatibility
is always bounded by 0 and 1. An incompatibility of 0 means that the two
pieces can be placed without waste.
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Figure 2: The distance between two pieces and wasted area (grey). The axes
and distances are given in arbitrary units.

Our packing algorithm seeks to exploit the geometrical compatibility be-
tween pairs of pieces. When compatible pieces are placed together, the space
between the pieces is small and this allows to minimize the wasted area in the
container. The first step of the algorithm consists of computing the geometri-
cal compatibility between all pairs of pieces, or equivalently, to compute the
distance matrix, which we define as

Definition 2 (Distance matrix) The N × N square matrix D with components
Di,j = di,j , where di,j = d(Pi, Pj) is the distance between pieces Pi and Pj .

4.1.2 Generate groups of geometrically compatible pieces

In the second step of the Opus Incertum algorithm, we generate groups of
pieces in which the pieces are pairwise geometrically compatible. We then
spatially arrange together the pieces that are geometrically compatible. For
this, we use the single-linkage clustering algorithm which is a hierarchical
clustering method [41]. In the beginning, each element is in a cluster of its own.
The agglomerative process consists of grouping the two clusters that contain
the closest pair of elements in each step. The clusters are then sequentially
combined into larger clusters, until all elements are in the same cluster. We
use the geometrical incompatibility measure in Eq. (3) to cluster the set of all
pieces. The single-linkage clustering algorithm then produces clusters in which
each piece has low geometrical incompatibility with at least one other pieces.
The resulting set of clusters forms a partition of the set of all pieces.
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To this end, it is necessary to abort the agglomerative process before all
the pieces belong to a single cluster. We achieve this in two ways. First, we
introduce a threshold for the maximum linkage distance allowed for merging
two clusters. To account for the arbitrariness of the threshold, we define several
threshold values and obtain different partitions of the set of pieces. Second, we
impose a maximum number of pieces per cluster, so that whenever this size is
about to be exceeded, the agglomerative process terminates.

4.1.3 Ordering pieces in each cluster

Consider a cluster Ci and denote its pieces Pi1 , . . . , Pin . The goal is to place
these pieces without overlap and as compactly as possible by exploiting their
geometrical compatibility. Since the compatibility of pieces is only a binary
measure, for n > 2 we do not know in general how large the area of the
minimum bounding polygon for the n cluster pieces is. Computing all possible
placements that avoid overlap for n pieces is not reasonable since it has an
exponential scaling in terms of the number of pieces which becomes already
problematic for small values of n.

We therefore place the pieces one by one in the order of some sequence
Piσ(1)

, . . . , Piσ(n)
. The number of possible permutations σ for a set of n elements

is n!. To limit the computation, we choose the sequence with minimal total
distance:

min
σ

n−1∑
i=1

d(Piσ(i)
, Piσ(i+1)

)

This sequence corresponds to the shortest Hamiltonian path, defined as follows.

Definition 3 (shortest Hamiltonian path) Consider the fully connected, undirected
and weighted graph with n = |V | nodes {1, . . . , n} and distances di,j from node i to
j as weights. A Hamiltonian path is a sequence σ(1), . . . , σ(n) visiting all nodes of
the graph exactly once, i.e., σ is a permutation of the set {1, . . . , n}. The shortest
Hamiltonian path is the Hamiltonian path with minimum total distance

D(σ) =

n−1∑
i=1

dσ(i),σ(i+1)

Finding the shortest Hamiltonian path of a weighted graph is known as
Traveling Salesman Problem (TSP). When n is small enough (roughly n ≤ 10),
the TSP is an NP-hard combinatorial optimization problem can be solved
exactly and fast using brute force search. Solving larger instances quickly be-
comes computationally challenging. Quantum computing provides methods to
solve this problem heuristically. In this work, we will focus on the Quantum
Approximate Optimization Algorithm [3] and the a variation thereof called
Quantum Alternating Operator Ansatz [4]. The former requries the reformula-
tion of the TSP into a quadratic unconstrained binary optimization (QUBO)
problem. This is described in Appendix A.
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4.1.4 Packing the pieces of each cluster

Once an order is obtained, the pieces in each cluster are packed as compactly
as possible. For this we use a greedy algorithm that follows in the order of the
chosen sequence Piσ(1)

, . . . , Piσ(n)
. We start by positioning the first piece Piσ(1)

with the default position (0, 0). For every subsequent step k = 2, . . . , n, we
then place the k-th piece Piσ(k)

by orbiting around the previous piece Piσ(k−1)

and searching for the position (r, θ) and orientation ϕ that minimizes the
area of the bounding box of Piσ(1)

, . . . , Piσ(k)
while avoiding overlap with the

previously positioned pieces.
The term orbiting here means that we vary θ from a set of predefined

angles Θ. For each θ, the no-fit function Eq. (1) returns a radius r and an angle
ϕ. If the k-th piece of the sequence can be placed relatively to the previous
piece with position (r, θ, ϕ) without overlap with the previously placed pieces,
then we place the piece and proceed with the next piece. In the general case,
however, the position returned by the no-fit function can lead to overlapping.
We then increase the value of r ∈ R while keeping the orientation ϕ fixed,
until the piece is far enough to avoid overlapping. We refer to this procedure
as no-fit-function-based greedy packing. Due to the no-fit function and the
constraint of keeping the orientation fixed, the complexity of greedy packing is
only O([|R| · |Θ|] · [n− 1]). Once the pieces of a cluster are placed, we compute
the corresponding bounding box, see Fig. 3.
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Figure 3: Packing of pieces in clusters. Axes are given in arbitrary units.
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4.1.5 Partition filtering

The number of partitions obtained may be large and lead to long computation
times. We reduce the number of partitions used for packing the pieces by
selecting the most promising ones. This can be done by computing a penalty
for each partition and keeping only the best npartitions ones. A simple penalty
score for some partition consists of the sum of areas of the rectangles.

4.1.6 Rectangle packing

Each cluster is a group of pieces that has been placed together tightly into a
bounding box of rectangular shape. In the rectangle packing step, these rect-
angles are allocated to the rectangular container with the help of an efficient
rectangle packer. This is a well known problem [42] which formally consists
of packing a set of K rectangles R = {R1, R2, . . . , RK}, where each rectangle
Ri has fixed length li and height hi in the rectangular container C of variable
length L and fixed height H. When all pieces are rectangular, the solution
space for the irregular packing problem becomes finite [16]. If we denote (xi, yi)
the coordinates of the bottom left corner of rectangle Ri, the problem can be
described as follows [42]:

minimize L

subject to 0 ≤ xi ≤ L− li, 1 ≤ i ≤ K

0 ≤ yi ≤ H − hi, 1 ≤ i ≤ K

At least one of the next four inequalities

holds for every pairRi andRj of rectangles :

xi + li ≤ xj

xj + lj ≤ xi

yi + hi ≤ yj

yj + hj ≤ yi

The first two constraints ensure that every rectangle is contained in the
container. The remaining constraints express that rectanlges do not overlap.
An illustration for the example in Fig. 1 is given in Fig. 4(a).

4.1.7 Local optimization

The initial placement is obtained from positioning the rectangles in the con-
tainer and substituting the rectangles for each cluster with the placement of
the cluster pieces generated by greedy packing. Each such initial placement
can be improved by local optimization. The objective of the local optimization
procedure is to reduce the length needed for the container. In this procedure,
the position of the pieces is variable, but their orientation is kept constant.
The procedure consists of iterating through all the pieces from the bottom-left
most to the top right most one and for each pieces, to apply translations of
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Figure 4: Results for the example shown in Fig. 1. (a) Rectangle packing for
the . The rectangles packed are from left to right, bottom to top R({0, 1, 2, 3}),
R({4, 5, 6, 7}). (b) Layout obtained with Opus Incertum. The container has a
length of L = 1151.89. The percentage of waste is 6.59%. The axes are given
in arbitrary units.

small amplitude (the granularity ∆r of R) leftwards and/or downwards. Con-
cretely, we apply translations with amplitude ∆r and direction given by one
of the following four unit vectors:

u1 =

[
−1
0

]
u2 =

1√
2

[
−1
−1

]
u3 =

1√
2

[
−1
+1

]
u4 =

[
0
−1

]
Translation are applied as long as the translated pieces does not overlap with
the other pieces and remain completely inside the container. We cycle several
times through all the pieces until no piece can be translated anymore. The
result can be seen in Fig. 4(b).

4.1.8 Global optimization

Local optimization reduces the gaps between neighbouring pieces, but it usu-
ally does not completely remove them. It is sometimes possible to make use
of these gaps to fit the rightmost piece. By relocating the rightmost piece
into one of these gaps, i.e., the piece which occupies a position the maximum
value on the horizontal x-axis, we have a good chance to reduce the length
needed for the container. This may not always be the case, as there may be
several rightmost pieces. The relocation thus needs to be repeated until the
currently selected rightmost piece cannot be relocated. To check if a piece can
be relocated, we scan from left to right and bottom to top for a position and
orientation of the piece to relocate and check if the piece can be inserted with-
out exiting the boundaries of the container and without overlapping with one
of the other pieces. Significant improvements of the container length may be
obtained as a result of global optimization.
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Algorithm 1 Opus Incertum

1: Inputs: set of N pieces P, fixed container height H, maximum cluster size
nmax, number of partitions npartitions

2: Outputs: optimal placement of the pieces and container length
3: compute the no-fit function NFFPi,Pj

for every pair of pieces Pi, Pj ∈ P
4: compute the distance and geometrical incompatibility matrices D and GI
5: define the set of distance thresholds T (GI)← values(GI)
6: compute a set of partitions of P by single-linkage clustering using the

distance thresholds of T (GI) and maximum cluster sizes ranging from 1
to N pieces per cluster

7: initialize container length L∗ ←∞
8: for each partition C do
9: for for each cluster C ∈ C do

10: solve the TSP for the distance sub-matrix D(C)
11: let s be the shortest Hamiltonian path obtained
12: pack greedily the pieces of C in the order of s
13: pack greedily the pieces of C in the reverse order of s
14: store the placement whose bounding box has the smallest area
15: end for
16: end for
17: keep from C the npartitions partitions with lowest penalty
18: for each partition C do
19: for bins as relaxation of the rectangular container H × L∗ do
20: try to pack the selected bounding boxes in the bin
21: if a solution is found to the rectangle packing problem then
22: optimize the placement by local optimization
23: let X be the optimized placement
24: let l and h be the length and height needed by X
25: if h ≤ H and l < L∗ then
26: update optimal placement X∗ ← X and length L∗ ← l
27: end if
28: end if
29: end for
30: end for
31: optimize the placement X∗ and length L∗ by shifting the right-most piece

to the bottom-left-most free area and repeat this step until no further
improvement is possible

32: return optimal placement X∗ and length L∗

4.2 The algorithm

With the previous definitions, we can now state the formal algorithm which
is shown in Algorithm 1. Given the set of N pieces P = {P0, . . . , PN−1}, we
first compute and store the values of the no-fit functions Eq. (1) for every
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pair of pieces Pi and Pj . Note that the no-fit function does not need to be re-
calculated if the pair of pieces is identical to a pair of pieces that has already
been considered. This happens when pieces have identical shapes. Besides,
after NFFPi, Pj has been computed, we can derive directly values of the no-fit
function NFFPj ,Pi

via

NFFPj ,Pi(θ) = (r, ϕ) where NFFPi,Pj (θ + 180− ϕ) = (r,−ϕ) . (5)

Once all no-fit functions are determined, the N ×N distance matrix D can
be quickly determined. Each distance di,j is calculated as follows:

θ∗ ← argmin
θ∈Θ

{area(CH(Pi, Pj(r, θ, ϕ))) | (r, ϕ) = NFFPi,Pj
(θ)}

(r∗, ϕ∗)← NFFPi,Pj (θ
∗)

di,j ← area(CH(Pi, Pj(r
∗, θ∗, ϕ∗)))− area(Pi)− area(Pj(r

∗, θ∗, ϕ∗))

Let T (GI) denote the set of threshold geometrical incompatibilities used
for the single-linkage clustering algorithm. This set may be any subset of the
set of coefficients of the distance matrix GI:

T (GI) ⊆ values(GI) = {gii,j |i ∈ {0, . . . , N − 1}, j ∈ {0, . . . , N − 1}} .

In our algorithm definition, we choose T (GI) = values(GI).
For every distance threshold dmax in T (GI) and maximum cluster size nmax

from 1 to N (or some lower upper limit), partition the set of pieces using the
single-linkage clustering algorithm and distance matrix GI. We obtain in this
way a set of partitions of P. We then initialize the variable L∗ which stores
the container length for the best placement found. The initial value given is
infinity.

For each partition C, we consider every cluster C in C and the distance of
the pieces in C, noted D(C), obtained directly as a sub-matrix of D. We then
solve the TSP for D(C) and get the shortest Hamiltonian path s = i1, . . . , in
visiting once exactly all pieces of the cluster. Since the distance matrix D and
D(C) are symmetric, the reverse path s′ = in, . . . , i1 has the same length and
is another equally optimal solution of the TSP. We thus greedily pack the
pieces in each cluster C either in the order of the sequence s or in the order
of s′. The placements and resulting bounding boxes differ in the general case.
We select and store the placement that results in the bounding box with the
smallest area of the two in memory.

For each partition C, we try to pack the bounding boxes inside the container
using a rectangle packer. More precisely, the packer gets the task of finding a
feasible placement of all bounding boxes within a rectangular container called
bin whose dimensions coincide with the current best container found H ×
L∗, where L∗ is the minimum length found so far. If the rectangle packer is
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Table 1: Performance of the Quantum Approximate Optimization Algorithm.
The optimality is defined in Eq. (6).

Optimizer p Optimality Execution time

COBYLA 1 78.2% 2.5s
2 76.6% 5.7s
3 79.3% 9.0s
4 77.1% 12.9s
5 85.9% 17.3s

BFGS 1 68.7% 6.4s
2 71.0% 16.8s
3 73.6% 26.5s
4 70.3% 44.5s
5 73.1% 50.8s

L-BFGS-B 1 68.7% 6.3s
2 70.4% 17.5s
3 73.6% 29.8s
4 67.9% 38.2s
5 73.1% 53.3s

SLSQP 1 70.9% 14.1s
2 83.1% 46.5s
3 72.1% 87.5s
4 82.8% 142.2s
5 84.3% 202.6s

SPSA 1 85.4% 23.4s
2 81.6% 28.5s
3 79.1% 36.5s
4 74.0% 42.9s
5 77.7% 51.4s

successful, the bounding boxes are replaced by the pieces of the cluster they
pack, resulting in a feasible placement of the set of all pieces P in a container
of dimension H × L∗. The placement can be further optimized using local
optimization, resulting in a container length L ≤ L∗. If L is an improvement
over L∗, then L∗ is updated with L and we store the placement as the optimal
placement X∗. If the length is not reduced, then no update is necessary. If
the rectangle packer does not find a solution for this dimension, we relax the
dimensions of the bin until a solution is found, by enlarging the length L∗

and/or the height H. Any solution found is optimized by local optimization
and feasible solutions (h ≤ H) are then compared to the optimal length L∗.
Whenever the optimal length is improved, we update the variables L∗ and X∗.

LetX∗ be the best placement found after consideration of all the partitions.
The length can be sometimes further optimized by global optimization, i.e.,
by iteratively relocating the right-most pieces to the left-most free gap in the
container.

5 Experimental Results

To evaluate the performance of our approach, we create two small problem
instances which belong to the class of packing problems where we expect the
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Table 2: Performance of the Quantum Alternating Operator Ansatz. The
optimality is defined in Eq. (6).

Optimizer p Optimality Execution time

COBYLA 1 66.9% 6.8s
2 70.9% 17.7s
3 72.6% 33.0s
4 84.6% 54.5s
5 74.5% 79.0s

BFGS 1 61.6% 3.0s
2 54.1% 6.4s
3 61.3% 10.2s
4 63.1% 14.4s
5 63.5% 19.1s

L-BFGS-B 1 62.9% 3.2s
2 61.7% 6.6s
3 61.3% 10.4s
4 60.8% 14.4s
5 62.9% 19.1s

SLSQP 1 64.2% 3.0s
2 60.4% 6.4s
3 61.8% 10.2s
4 60.9% 14.4s
5 66.1% 19.1s

SPSA 1 67.2% 38.2s
2 76.1% 66.6s
3 80.0% 96.4s
4 72.9% 126.3s
5 72.9% 157.3s

Opus Incertum Algorithm to yield optimal results. The sets contain six and
seven pieces, respectively. The pieces can be arranged in pairs or triples and
form almost perfect rectangles when aligned. These can then be optimally
packed inside the container by the rectangle packer. For reproducible, we pro-
vide the definition of the sets of pieces in Appendix B. We also evaluate our
approach for five problem instances commonly used for benchmarking packing
algorithms. The instances are referred to as SHAPES1, SHAPES2, SHIRTS,
TROUSERS and SWIM and their definition can be found in [43]. Note how-
ever that these sets, which contain between 28 and 99 pieces, do not fulfil our
requirements very well.

For each problem instance, we report the performance obtained with
SVGnest2 compared to the results of Opus Incertum. Our Python implemen-
tation, which is based on the Python modules Shapely3 and RectPack4.

To solve the TSPs, we implement one classical brute force search and two
quantum algorithms: the Quantum Approximate Optimization Algorithm and
the Quantum Alternating Operator Ansatz. The hyper-parameters for the
quantum algorithms are the number of repetitions and the classical optimizer,

2https://github.com/Jack000/SVGnest
3https://pypi.org/project/shapely/
4https://pypi.org/project/rectpack/

https://github.com/Jack000/SVGnest
https://pypi.org/project/shapely/
https://pypi.org/project/rectpack/


Springer Nature 2021 LATEX template

A heuristic the irregular strip packing problem 15

Algorithm 2 Post-processing of results from quantum circuits.

1: Inputs: a binary string x0,0 . . . xi,p . . . xn−1,n−1 of length n2

2: Outputs: a hamiltonian path for the nodes {0, . . . , n− 1}
3: for each node i, compute

∑n−1
p=0 xi,p and if the sum is strictly greater than

1, select at random a step p∗ which xi,p∗ = 1 and set all the xi,p for p ̸= p∗

to 0
4: for each step p, compute

∑n−1
i=0 xi,p and if the sum is strictly greater than

1, select at random a node i∗ which xi,p∗ = 1 and set all the xi,p for i ̸= i∗

to 0
5: for each node i, compute

∑n−1
p=0 xi,p and if the sum is null, select at random

a step p∗ for which
∑

j xj,p∗ = 0 and set xi,p∗ to 1

6: for each step p, compute
∑n−1

i=0 xi,p and if the sum is null, select at random
a node i∗ for which

∑
p′ xi∗,p′ = 0 and set xi∗,p to 1

7: let σ = i0, . . . , in−1 be the path defined for any step p by ip = i if xi,p = 1
8: return path σ

which are set as follows. We randomly generate 30 symmetric distance matri-
ces of dimension 4× 4, using coefficients uniformly distributed between 0 and
1. We run each algorithm on these problems using repetitions ranging from 1
to 5 and optimize the circuits using one of the following classical optimizers:
COBYLA, BFGS, L-BFGS-B, SLSQP and SPSA. The quantum algorithms
are then executed using Qiskit [44] on a quantum simulator without noise
(qasm simulator). Each circuit is executed 1,000 times and the result(s) with
highest count is/are post-processed. Post-processing is necessary to ensure the
validity of each solution. We call any Hamiltonian path, i.e., a sequence visit-
ing each node exactly once a valid solution. The post-processing is shown in
Algorithm 2. In case multiple solutions are obtained, we compute the corre-
sponding total distances and keep the Hamiltonian path σ with smallest total
distance D(σ) as a unique solution. The performance for a path is measured
by the optimality of its total distance, which we define as

1− D(σ)−Dmin

Dmax −Dmin
(6)

The optimality is averaged over the different TSPs.
The results are given in the Tables 1 and 2. It can be observed that in our

experiments, the vanilla version of the Quantum Approximate Optmiziation
Algorithm performs overall better while simulataneously requiring less execu-
tion time. As expected, the quality of the solution generally increases with an
increasing number of iterations, although we observe some exceptions such as
the SPSA variant of the Quantum Approximate Optmiziation Algorithm. For
the following application of the Opus Incertum Algorithm, we proceed with a
choice of the COBYLA optimizer and p = 5 repetitions for the Quantum Ap-
proximate Optimization Algorithm, and the COBYLA optimizer and p = 4
repetitions for the Quantum Alternating Operator Ansatz.
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PROBLEM INSTANCE
vs. METHOD

PUZZLE1
6 shapes,
6 pieces,
H = 750

PUZZLE2
7 shapes,
7 pieces,
H = 420

PUZZLE3
12 shapes,
12 pieces,
H = 1200

Opus Incertum (Brute Force
Search)

W=14.77%,
T=659.02s

W=6.55%,
T=927.17s

W=14.47%,
T=8784.24s

Opus Incertum (Quantum
Approximate Optimization
Algorithm, simulator)

W=14.77%,
T=645.50s

W=6.55%,
T=830.17s

W=18.76%,
T=8557.82s

Opus Incertum (Quantum
Approximate Optimization
Algorithm, quantum com-
puter)

W=14.77%,
T=697.29s

W=6.70%,
T=899.36s

W=20.10%,
T=9155.27s

Opus Incertum (Quan-
tum Alternating Operator
Ansatz, simulator)

W=14.77%,
T=656.60s

W=6.55%,
T=902.98s

W=17.36%,
9348.29s

Opus Incertum (Quan-
tum Alternating Operator
Ansatz, quantum computer)

W=14.77%,
T=705.43s

W=6.86%,
T=1069.09s

W=21.35%,
T=22877.37s

Figure 5: Performance results for PUZZLE1, PUZZLE2 and PUZZLE3. Re-
sults from real quantum computer are obtained from IBM Ehningen.

PROBLEM INSTANCE
vs. METHOD

SHAPES1
4 shapes,
43 pieces,
H = 400

SHAPES2
7 shapes,
28 pieces,
H = 150

SHIRTS
8 shapes,
99 pieces,
H = 400

TROUSERS
17 shapes,
64 pieces,
H = 790

SWIM
10 shapes,
48 pieces,
H = 5752

Opus Incertum (Brute Force
Search)

W=42.97%,
T=2137.24s

W=27.12%,
T=4981.99s

W=24.20%,
T=13279.78s

W=16.77%,
T=50639.89s

W=44.42%,
T=69377.16s

Opus Incertum (Quantum
Approximate Optimization
Algorithm, simulator)

W=42.97%,
T=3066.53s

W=27.12%,
T=5370.31s

W=22.33%,
T=15495.49s

W=16.77%,
T=39215.46s

W=49.78%,
T=32074.27s

Opus Incertum (Quantum
Approximate Optimization
Algorithm, quantum com-
puter)

W=42.97%,
T=3424.93s

W=27.12%,
T=13373.23s

W=26.44%,
T=83871.25s

W=16.77%,
T=47787.09s

W=41.31%,
T=34753.92s

Opus Incertum (Quan-
tum Alternating Operator
Ansatz, simulator)

W=37.22%,
T=3356.84s

W=27.12%,
T=6611.17s

W=24.20%,
T=8294.80s

W=16.77%,
T=39171.81s

W=40.26%,
T=35808.40s

Opus Incertum (Quan-
tum Alternating Operator
Ansatz, quantum computer)

W=37.22%,
T=4462.86s

W=27.12%,
T=11551.44s

W=22.33%,
T=8930.77s

W=16.77%,
T=47459.27s

W=41.31%,
T=41310.82s

Figure 6: Performance results for SHAPES1, SHAPES2, SHIRTS,
TROUSERS and SWIM. Results from real quantum computer are obtained
from IBM Ehningen.

Once the hyper-parameters are set, we build variational circuits with p
repetitions and train the parameters of the QAOA algorithms with the cho-
sen optimizer using a noiseless quantum simulator up to n2 = 16 qubits.
We compare these results to computations on the IBM quantum computer in
Ehningen [45]. As for the hyper-parameter optimization setting, we use 1,000
shots per circuit, select the results with the highest count and post-process the
bit-strings to obtain valid solutions.

The performance results for PUZZLE1, PUZZLE2 and PUZZLE3 are
shown in Fig. 5 and for SHAPES1, SHAPES2, SHIRTS, TROUSERS and
SWIM in Fig. 6. The results obtained with the Opus Incertum Algorithm
depend on several factors, such as the number of rotation angles in Θ and ori-
entation angles in Φ, spatial granularity ∆r, the spatial granularity of the grid
used for relocating pieces, the maximum cluster size nmax allowed and the algo-
rithm and hyper-parameter combination used to solve the TSP instances and
the number of partitions. In our experiments, we allow rotations in multiples
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of 5 degrees which amounts to 72 rotations in total. For PUZZLE1, PUZ-
ZLE2 and PUZZLE3, we restrict the rotations to multiples of 90 degrees. For
SHAPES1, SHAPES2, SHIRTS, SWIM and TROUSERS, we consider multi-
ple of 45 degrees, amounting to 8 distinct rotations. The spatial granularity
is set to ∆r = 5. The grid is a uniform grid from the container of dimension
100× 100. In our experimental setting, we limit the maximum cluster size to
4 pieces as a higher number would then exceed the maximum number of 16
qubits that a quantum simulator can handle. We set the number of partitions
to 20 for PUZZLE 1, 40 for PUZZLE2 and 50 for PUZZLE3. These parameters
play a critical role in determining the algorithm’s ability to find an optimal
layout, with the choice of rotation angles directly affecting the potential for
piece alignment and the granularity impacting the resolution of placement.
The decision to use different parameters for different problem sets illustrates a
tailored approach to optimization, trading off between computational demand
and the quality of the solution.

Note, however, that better results than those displayed can be achieved
by increasing for instance the number of rotations, increasing the maximum
cluster size (up to 10 pieces when solving the TSPs by brute force search) and
the number of partitions, at the expense of longer computation times. The
final placements for each problem instance can be found in Appendix C.

It can be observed that solving the TSP with one of the quantum algo-
rithms is often comparable to brute force solutions with no general tendency
of a significant performance supremacy in either direction. Notably, the results
obtained by solving the TSP on a real quantum computer are competitive
with those obtained from a noiseless simulation, indicating a certain robust-
ness in the Opus Incertum Algorithm. For example, in PUZZLE2, the waste
percentage achieved by the Quantum Approximate Optimization Algorithm
on a quantum computer (W = 6.70%, T = 899.36s) closely mirrors that of
the brute force search (W = 6.55%, T = 927.17s), illustrating the quantum
method’s capacity to match classical performance levels. This parity is visible
in other problem instances as well and suggests that while quantum computing
offers a novel approach to problem-solving, its current stage of development
shows comparable efficiency to classical methods for this specific application.

6 Conclusion

We have decomposed the NP-hard strip packing problem into two core prob-
lems, the TSP and the regular packing problem. In this work, we have solved
the TSP classically and with quantum computing, using two different vari-
ants of the QAOA algorithm. Interestingly, the regular packing problem can
be formulated in QUBO form and also be solved using quantum computing,
as demonstrated recently in [40]. The practicality of the proposed algorithm
as a quantum-classical hybrid or a purely classical, quantum-inspired method,
is contingent on the advancements in quantum computing and the chosen ap-
proach for solving the underlying TSP. It is agnostic to the specific method
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employed for the TSP, meaning the performance significantly varies with the
choice between novel quantum algorithms or classical heuristics. Furthermore,
the selection of hyperparameters, particularly the granularity of angles and
grids, introduces a crucial trade-off between the quality and performance of
the solution. In comparing our algorithm’s effectiveness, it is important to
benchmark not only against brute force solutions but also against classical
heuristics, which can offer a more efficient yet effective alternative. Another
promising avenue for research is exploring scalability, particularly with regards
to significantly increasing the number of pieces within each cluster. This is
particularly interesting because, fundamentally, the Opus Incertum algorithm
performs local optimization that becomes more global as the number of pieces
within each cluster increases relative to the total number of clusters.

The proposed approach may be improved as follows. Other measures of
geometrical compatibility may be developed and lead to more dense clusters
of pieces. The algorithm complexity may be improved. Indeed, the number of
partitions of the set of pieces used for generating candidate placements may
be reduced, by considering only the most promising partitions. For instance,
after computing all partitions, one could assign to each partition a loss simply
defined as the total area of the boxes bounding the clustered pieces and choose
the partitions with the smallest loss.
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Appendix A Formulating the TSP as a QUBO

In this section, we describe here how the TSP is encoded as a QUBO [46]. A
path σ(1), . . . , σ(n) through the nodes 1, . . . , n of the graph is encoded by a
set x of n2 binary variables xi,p ∈ {0, 1}, where i and p are integers that range
from 1 to n. Let xi,p ∈ {0, 1} be 1 if the path goes through node i at step p.
The path visits n nodes if and only if ∀p ∈ {1, . . . , n} :

∑n
i=1 xi,p = 1. The

path visits each node once if and only if ∀i ∈ {1, . . . , n} :
∑n

p=1 xi,p = 1. The

total distance to be minimized is D(x) =
∑n

i=1

∑n
j=1 di,j

∑n−1
p=1 xi,pxj,p+1. The

TSP is then equivalent to minimizing

C(x) =

n∑
i=1

n∑
j=1

di,j

n−1∑
p=1

xi,pxj,p+1+A

n∑
p=1

(
1−

n∑
i=1

xi,p

)2

+A

n∑
i=1

(
1−

n∑
p=1

xi,p

)2

as long as the penalty A is large enough (A > max{|di,j |}).

Appendix B Definition of puzzles

• PUZZLE1 (6 pieces):

– P0 = [(0, 0), (400, 0), (400, 400)]
– P1 = [(0, 0), (450, 0), (480, 470), (0, 480), (0, 400), (300, 400), (400, 300),
(300, 200), (0, 200)]

– P2 = [(0, 0), (100, 0), (100, 400), (200, 400), (200, 500), (0, 500)]
– P3 = [(0, 0), (400, 0), (400, 280), (20, 690)]
– P4 = [(0, 0), (100, 0), (100, 470), (0, 490), (0, 280), (-300, 280), (-370,

200), (-300, 130), (0, 130)]
– P5 = [(0, 0), (100, 0), (100, 400), (200, 400), (200, 500), (0, 500)]

• PUZZLE2 (7 pieces):

– P0 = [(0, 0), (200, 0), (200, 300), (-100, 300), (-100, 100), (0, 100)]
– P1 = [(0, 0), (200, 0), (190, 150), (100, 100), (0, 150)]
– P2 = [(0, 0), (300, 0), (300, 100), (200, 100)]
– P3 = [(0, 0), (300, 0), (300, 190), (200, 190), (200, 100), (0, 100)]
– P4 = [(0, 0), (150, 0), (200, 100), (150, 200), (0, 200), (-50, 150), (0, 100),
(-50, 50)]

– P5 = [(0, 0), (200, 0), (200, 90), (150, 40), (100, 90), (50, 40), (0, 90)]
– P6 = [(0, 0), (300, 0), (300, 100), (200, 100)]

• PUZZLE3 (12 pieces):

– P0 = [(0, 0), (400, 0), (400, 120), (480, 120), (480, 480), (280, 480), (280,
720), (480, 720), (480, 780), (0, 780)]

– P1 = [(0, 0), (700, 0), (700, 250), (600, 150), (500, 250), (300, 250), (200,
350), (100, 250), (0, 250)]

– P2 = [(0, 0), (680, 0), (700, 380), (500, 180), (300, 380), (0, 170)]
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– P3 = [(0, 0), (270, 0), (170, 100), (270, 200), (170, 300), (170, 400), (0,
400), (0, 270), (-70, 270), (-70, 120), (0, 120)]

– P4 = [(0, 0), (300, 0), (300, 500), (200, 370), (100, 650), (0, 470)]
– P5 = [(0, 0), (280, 0), (180, 320), (280, 320), (280, 480), (180, 480), (280,

780), (0, 780)]
– P6 = [(0, 0), (300, 0), (300, 580), (200, 280), (100, 700), (0, 500)]
– P7 = [(0, 0), (100, 0), (100, 100), (0, 200), (100, 300), (100, 500), (200,

600), (100, 700), (-200, 700), (0, 400), (-200, 200)]
– P8 = [(0, 0), (100, 0), (100, 80), (300, 80), (300, 0), (400, 0), (400, 200),

(0, 200)]
– P9 = [(0, 0), (400, 0), (500, 300), (400, 300), (400, 500), (500, 500), (400,

800), (100, 800), (100, 700), (-100, 700), (-100, 500), (100, 500), (100, 100),
(0, 100)]

– P10 = [(0, 0), (100, 0), (100, 100), (200, 100), (200, 0), (300, 0), (300, 100),
(400, 100), (400, 300), (300, 300), (200, 200), (100, 300), (0, 200)]

– P11 = [(0, 0), (180, 0), (180, 80), (70, 80), (70, 220), (180, 220), (180, 280),
(80, 280), (80, 400), (0, 400)]

Appendix C Final placements
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Figure C1: Results obtained for PUZZLE1, PUZZLE2 and PUZZLE3 using
Opus Incertum and Brute Force Search.



Springer Nature 2021 LATEX template

26 A heuristic the irregular strip packing problem

200 400 600 800 1000 1200
0

200

400

600

800

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

P21

P22

P23

P24

P25

P26

P27

P28

P29

P30

P31

P32

P33

P34

P35

P36

P37

P38

P39

P40

P41

P42

SHAPES1: 43 pieces

(a) Set of 43 pieces for SHAPES1

0 100 200 300 400 500 600 700

0

100

200

300

400

Layout for SHAPES1

(b) Opus Incertum (Brute Force Search)

0 100 200 300 400 500 600 700

0

100

200

300

400

Layout for SHAPES1

(c) Opus Incertum (Quantum Approximate Op-
timization Algorithm, simulator)

0 100 200 300 400 500 600 700

0

100

200

300

400

Layout for SHAPES1

(d) Opus Incertum (Quantum Approximate Op-
timization Algorithm, quantum computer)

0 100 200 300 400 500 600

0

100

200

300

400

Layout for SHAPES1

(e) Opus Incertum (Quantum Alternating Oper-
ator Ansatz, simulator)

0 100 200 300 400 500 600

0

100

200

300

400

Layout for SHAPES1

(f) Opus Incertum (Quantum Alternating Oper-
ator Ansatz, quantum computer)

Figure C2: Results obtained for SHAPES1.
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Figure C3: Results obtained for SHAPES2.
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Figure C4: Results obtained for SHIRTS.
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Figure C5: Results obtained for TROUSERS.
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Figure C6: Results obtained for SWIM.
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