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Overview

Introduction

The present tutorial aims to provide a comprehensible and easily accessible introduction into the
theory and implementation of the famous Quantum Approximate Optimization Algorithm (QAOA).
We lay our focus on practical aspects and step-by-step guide through the realization of a proof of
concept quantum application based on a real-world use case. In every step we first explain the
underlying theory and subsequently provide the implementation using IBM’s Qiskit. In this way
we provide a thorough understanding of the mathematical modelling and the (quantum) algorithms
as well as the equally important knowledge how to properly write the code implementing those
theoretical concepts. As another central aspect of this tutorial we provide extensive experiments
on the 27 qubits state-of-the-art quantum computer ibmq_ehningen. From the discussion of these
experiments we gain an overview on the current status of quantum computers and deduce which
problem sizes can meaningfully be executed on today’s hardware.

Structure

This tutorial is divided into four notebooks. In Notebook 1 we introduce the use case that will
accompany us all the time and on which we will demonstrate all ideas and concepts. We present
the mathematical modeling of the use case as an optimization problem as well as the associated
implementation in Python and Qiskit. Notebook 2 is dedicated to the theory and implementation
of QAOA. Moreover, we will discuss the classical optimization that is always present in variational
algorithms like QAOA and provide advanced knowledge on the gate synthesis of the QAOA opera-
tors. Subsequently, Notebook 3 deals with the topic how QAOA circuits can be optimally executed
on real quantum computers. We present a transpilation pipeline that implements this task and
explain how to run experiments on real quantum hardware. Additionally, we demonstrate in this
notebook how the experimental results can be post-processed with the big data tool Pandas. Fi-
nally, in Notebook 4 we present a large variety of results from experiments on simulators and most
of all from the quantum computer ibmq_ehningen. Among others, we discuss challenges in classical
optimization, that besides the number of required qubits the amount of coupling of the variables in
the underlying optimization problem is a central factor in judging if a problem is feasible for current
quantum hardware, and that the transpilation pipeline and error mitigation techniques have a great
effect on the quality of experimental results. While those techniques allow to get the most out from
current quantum computers our experiments also clearly show today’s limits with respect to the
problem size and the quality of the results.
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Code Availability and Technical Requirements

This tutorial is based and closely follows demonstration notebooks that were developed as a part of
the project SEQUOIA within the Competence Center Quantum Computing Baden-Württemberg.
The codes shown in this tutorial as well as the codes of the used helper functions are available in
the SEQUOIA use case database or upon request from the author.

All codes were developed with

• mthree==1.1.0
• numpy==1.19.5
• pandas==1.2.1
• plotly==4.14.3
• qiskit==0.39.4
• qiskit_aer==0.11.1
• qiskit_terra==0.22.2
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Notebook 1

1.1 Real World Problem

The project LamA - Laden am Arbeitsplatz (english: charging at work) is a joint project led
by Fraunhofer IAO and funded by the federal government of Germany. Among others the goal is
to build up charging infrastructure for electric vehicles at 37 institutes of the Fraunhofer society
across Germany so that employees can charge their electric cars at work [5, 6, 13].

In this tutorial we aim to provide an optimal charging schedule for this charging infrastructure.
Clearly, such an optimization can be implemented with respect to different aspects, e.g. by involving
weather predictions we could optimize the schedule such that as much clean energy (sun, wind, etc.)
as possible is used. Or, considering that the price of energy from the public electricity grid varies
over time and the electric vehicles are charged during working hours, i.e. around a fairly long period
of about 8 hours, we could optimize the schedule such that it takes energy from the grid when it is
the cheapest. Having in mind that quantum computing is currently in the NISQ (noisy intermediate
scale quantum) era we decided for this tutorial to consider the aspect of minimizing the peak
load that is taken from the eletricity grid. This reduces costs, relieves the public electricity grid and
– as we will see – can be reduced to a meaningful proof of concept problem that can be executed
on today’s available quantum computers.

1.2 Proof of Concept Model

Let us begin by introducing the proof of concept (POC) model that we will consider in this tutorial.
It is an optimization task where we are given

• the number of cars that have to be charged,
• the arrival and departure times of these cars, and
• the required energies they need to charge.

Our aim is to

• minimize the peak load taken from the electricity grid,
• meet the time restrictions imposed by the arrival and departure times, and
• charge the correct amount of energies.

In order to make this optimization task feasible for a NISQ computer we make the following sim-
plifications:

• We work with discrete time slots and
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• we assume that we can only charge on discrete loading levels.

Let us illustrate this rather abstract optimization task with a simple toy example.

1.2.1 Toy Example

We consider a charging station with 6 charging levels (i.e. levels 0, 1, . . . , 5) and 7 available time
slots (i.e. slots 0, 1, . . . , 6). Moreover, let us take two cars (named car_green and car_orange),
where

• car_green is at the charging station at time slots 0, . . . , 3 and needs to charge 8 energy units,
and

• car_orange is at the charging station at time slots 1, . . . , 6 and needs to charge 12 energy
units.

A visualization of the example is given in Figure 1.1.

Figure 1.1: A simple example with one charging station and two cars.

An optimization process for the above situation could for example yield the charging schedules
depicted in Figure 1.2.
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(a) A non-feasible schedule because
the energy constraint is violated.

(b) A non-feasible schedule because
the time constraint is violated.

(c) A non-optimal schedule because
the peak load is not as low as pos-
sible.

(d) An optimal schedule.

Figure 1.2: Possible outcomes of an optimization process for the situation described in Figure 1.1

Our next step is to find a formal mathematical description for our POC model.

1.3 Mathematical Description of POC Model

1.3.1 Notation

In the following we use the notation:

• T ∈ N: Number of time slots → we have time slots 0, 1, . . . , T − 1.
• L ∈ N: Number of charging levels → we have charging levels 0, 1, . . . , L− 1.
• K ∈ N: Number of cars → we have K cars that we label as 0, 1, . . . ,K − 1.

Moreover, for every car k ∈ {0, . . . ,K − 1} we define:

• tak ∈ {0, . . . , T − 1}: Arrival time of car k.
• tdk ∈ {0, . . . , T − 1}: Departure time of car k.
• ek ∈ N: Required amount of energy.

Finally, for every car k ∈ {0, . . . ,K − 1} and for every time slot t ∈ {0, . . . , T − 1} we define:

• ptk ∈ {0, . . . , L− 1}: Charging level on which car k charges at time slot t (i.e. the amount of
energy packages it draws from the electricity grid on time slot t).

For a shorter notation we introduce the vectors
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• ~pk =

 p0k
...

pT−1k

 ∈ {0, . . . , L− 1}T , where k ∈ {0, . . . ,K − 1},

• ~p =

 ~p0
...

~pK−1

 ∈ {0, . . . , L− 1}KT .

The entries of ~pk form the charging curve for car k, see Figure 1.2.

Last, we define the vector ~psum so that its t-th component is the sum of the charging levels of all
cars for time slot t:

~psum = ~p0 + ~p1 + · · ·+ ~pK−1 =

 p00 + p01 + . . . p0K−1
...

pT−10 + pT−11 + . . . pT−1K−1

 .

It is easy to see that we have
~psum =

(
IT IT · · · IT︸ ︷︷ ︸

K times

)
~p , (1.1)

where IT is the T × T identity matrix.

With this notation at hand we can set up a cost function that assigns a cost to a charging schedule.

1.3.2 Cost Function

Note that the summation of all components of the vector ~psum gives the total energy drawn from
the electricity grid. Further, observe that for the same total energy the smaller the `2-norm ‖~psum‖2
of ~psum the smaller the peak load. E.g.

∥∥∥∥∥∥
1
2
3

∥∥∥∥∥∥
2

2

= 12 + 22 + 32 = 14,

∥∥∥∥∥∥
2
2
2

∥∥∥∥∥∥
2

2

= 22 + 22 + 22 = 12.

Moreover, note that

‖~psum‖22 = ~p tsum~psum = ~p tA~p , A = 1
t
K1K ⊗ IT ,

where we used (1.1) and where 1K = (1, 1 . . . , 1)t ∈ RK .

So, we can use the following cost function for the minimization of the peak load:

f1(~p ) = ~p tA~p . (1.2)

Clearly, only minimizing f1 would yield ~p = (0, 0, . . . , 0)t, which means that no charging would
take place at all. Thus, we have to incorporate constraints that enforce the charging of the correct
amount of energy at valid time slots.
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1.3.3 Constraints

For every k ∈ {0, . . . ,K − 1} we define

Ck =
(
0 . . . 0 1︸︷︷︸

tak

1 . . . 1 1︸︷︷︸
tdk

0 . . . 0
)
,

and collect all Ck in a matrix C:

C =


C0

C1

. . .
CK−1

 .

Then, the constraints (charge at valid times the right amount of energy) are given by

C~p = ~e , ~e =

 e0
...

eK−1

 ,

where ek is the amount of energy car k needs to charge, see Sections 1.3.2 and 1.3.3.

1.3.4 Minimization Problem

Putting all together we have a quadratic constrained integer optimization problem that reads


min

~p∈{0,...,L−1}KT
f1(~p ) ,

such that C~p = ~e .

(QCIO)

Next, we want to implement the logic of (QCIO) in Python and Qiskit.

1.4 Implementation of POC Model

1.4.1 Part 1: Python

First, we write a class that holds the data for a car that should be charged.

[2]: from typing import List

class Car:
def __init__(

self,
car_id: str, # an arbitrary name for the car
time_slots_at_charging_unit: List[int], # time slots when the

# car is at the charging unit
required_energy: int # energy units that should be charged
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) -> None:
self.car_id = car_id
self.time_slots_at_charging_unit = time_slots_at_charging_unit
self.required_energy = required_energy

def __str__(self) -> str:
return f"Car '{self.car_id}':\n" \

" at charging station at time slots " \
f"{self.time_slots_at_charging_unit}\n" \
" requires " \
f"{self.required_energy} energy units"

Next, we write a class to hold the data for a charging unit and with the possibility to register cars
to charge at it. Moreover, to keep things simple we give this class the task to generate the matrices
of the mathematical formulation of our POC model, see Section 1.3.

[6]: import numpy as np

class ChargingUnit:
def __init__(

self,
charging_unit_id: str, # an arbitrary name for the charging unit
number_charging_levels: int,
number_time_slots: int,

) -> None:
self.charging_unit_id = charging_unit_id
self.number_charging_levels = number_charging_levels
self.number_time_slots = number_time_slots
self.cars_to_charge = []

def __str__(self) -> str:
info_cars_registered = ""
for car in self.cars_to_charge:

info_cars_registered = info_cars_registered + " " + car.car_id
return "Charging unit with\n" \

" charging levels: " \
f"{list(range(self.number_charging_levels))[1:-1]}\n" \
" time slots: " \
f"{list(range(self.number_time_slots))[1:-1]}\n" \
" cars to charge:" \
+ info_cars_registered

def register_car_for_charging(self, car: Car) -> None:
if max(car.time_slots_at_charging_unit) > self.number_time_slots - 1:

raise ValueError("From car required time slots not compatible "
" with charging unit.")

self.cars_to_charge.append(car)
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def reset_cars_for_charging(self) -> None:
self.cars_to_charge = []

def generate_constraint_matrix(self) -> np.ndarray:
"""Matrix with ones for times when car is at charging station
and with zeros if car is not at charging station"""

number_cars_to_charge = len(self.cars_to_charge)
constraint_matrix = np.zeros(

(number_cars_to_charge,
number_cars_to_charge*self.number_time_slots))

for row_index in range(0, number_cars_to_charge):
offset = row_index*self.number_time_slots
cols = np.array(

self.cars_to_charge[row_index].time_slots_at_charging_unit)
constraint_matrix[row_index, offset+cols] = 1

return constraint_matrix

def generate_constraint_rhs(self) -> np.ndarray:
"""Vector with required energy as entries"""
number_cars_to_charge = len(self.cars_to_charge)
constraint_rhs = np.zeros((number_cars_to_charge, 1))
for row_index in range(0, number_cars_to_charge):

constraint_rhs[row_index] = \
self.cars_to_charge[row_index].required_energy

return constraint_rhs

def generate_cost_matrix(self) -> np.ndarray:
number_cars_to_charge = len(self.cars_to_charge)
return np.kron(

np.ones((number_cars_to_charge, 1)) \
@ np.ones((1, number_cars_to_charge)),

np.eye(self.number_time_slots))

Toy Example: Implementation in Python

Let’s instantiate the objects for our upper example:

[3]: car_green = Car(
car_id="car_green",
time_slots_at_charging_unit=[0, 1, 2, 3],
required_energy=8)

car_orange = Car(
car_id="car_orange",
time_slots_at_charging_unit=[1, 2, 3, 4, 5, 6],
required_energy=12)
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[4]: print(car_green)
print(car_orange)

Car 'car_green':
at charging station at time slots [0, 1, 2, 3]
requires 8 energy units

Car 'car_orange':
at charging station at time slots [1, 2, 3, 4, 5, 6]
requires 12 energy units

[5]: charging_unit = ChargingUnit(
charging_unit_id="charging_unit",
number_charging_levels=6,
number_time_slots=7)

[6]: print(charging_unit)

Charging unit with
charging levels: 0, 1, 2, 3, 4, 5
time slots: 0, 1, 2, 3, 4, 5, 6
cars to charge:

[7]: charging_unit.register_car_for_charging(car_green)
charging_unit.register_car_for_charging(car_orange)
print(charging_unit)

Charging unit with
charging levels: 0, 1, 2, 3, 4, 5
time slots: 0, 1, 2, 3, 4, 5, 6
cars to charge: car_green car_orange

Now, let’s get the cost matrix A, the constraint matrix C, and the constraint right-hand side (RHS)
vector ~e:

[8]: A = charging_unit.generate_cost_matrix()
print(f"A =\n{A}")

A =
[[1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
[0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
[0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0.]
[0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1.]
[1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
[0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
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[0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0.]
[0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1.]]

[9]: C = charging_unit.generate_constraint_matrix()
e = charging_unit.generate_constraint_rhs()
print(f"C =\n{C}\n")
print(f"e =\n{e}")

C =
[[1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1.]]

e =
[[ 8.]
[12.]]

Next, we move to Qiskit, where we can easily implement the minimization problem.

1.4.2 Part 2: Qiskit

The module qiskit_optimization contains the class QuadraticProgram which is used to rep-
resent quadratic optimization problems. In the following code we write a function that gener-
ates a QuadraticProgram instance according to (QCIO), where the necessary data stem from a
ChargingUnit object.

Remark: For further information about qiskit_optimization and how it is used see e.g. [22].

[18]: from qiskit_optimization import QuadraticProgram

def generate_qcio(
charging_unit: ChargingUnit,
name: str=None

) -> QuadraticProgram:
if name is None:

name = ""
qcio = QuadraticProgram(name)

for car in charging_unit.cars_to_charge:
qcio.integer_var_list(

keys=[f"{car.car_id}_t{t}" \
for t in range(0, charging_unit.number_time_slots)],

lowerbound=0,
upperbound=charging_unit.number_charging_levels-1,
name="p_")

constraint_matrix = charging_unit.generate_constraint_matrix()
constraint_rhs = charging_unit.generate_constraint_rhs()
for row_index in range(0, constraint_matrix.shape[0]):
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qcio.linear_constraint(
linear=constraint_matrix[row_index, :],
rhs=constraint_rhs[row_index][0],
sense="==",
name=f"charge_correct_energy_for_{charging_unit.

↪→cars_to_charge[row_index].car_id}")

cost_matrix = charging_unit.generate_cost_matrix()
qcio.minimize(quadratic=cost_matrix)

return qcio

Toy Example: Implementation in Qiskit

For our upper charging_unit we get:

[11]: qcio = generate_qcio(charging_unit, name="QCIO")

[12]: print(qcio.prettyprint())

Problem name: QCIO

Minimize
p_car_green_t0ˆ2 + 2*p_car_green_t0*p_car_orange_t0
+ p_car_green_t1ˆ2 + 2*p_car_green_t1*p_car_orange_t1
+ p_car_green_t2ˆ2 + 2*p_car_green_t2*p_car_orange_t2
+ p_car_green_t3ˆ2 + 2*p_car_green_t3*p_car_orange_t3
+ p_car_green_t4ˆ2 + 2*p_car_green_t4*p_car_orange_t4
+ p_car_green_t5ˆ2 + 2*p_car_green_t5*p_car_orange_t5
+ p_car_green_t6ˆ2 + 2*p_car_green_t6*p_car_orange_t6
+ p_car_orange_t0ˆ2 + p_car_orange_t1ˆ2 + p_car_orange_t2ˆ2
+ p_car_orange_t3ˆ2 + p_car_orange_t4ˆ2 + p_car_orange_t5ˆ2
+ p_car_orange_t6ˆ2

Subject to
Linear constraints (2)

p_car_green_t0 + p_car_green_t1 + p_car_green_t2
+ p_car_green_t3 == 8 'charge_correct_energy_for_car_green'
p_car_orange_t1 + p_car_orange_t2 + p_car_orange_t3
+ p_car_orange_t4 + p_car_orange_t5 + p_car_orange_t6
== 12 'charge_correct_energy_for_car_orange'

Integer variables (14)
0 <= p_car_green_t0 <= 5
0 <= p_car_green_t1 <= 5
0 <= p_car_green_t2 <= 5
0 <= p_car_green_t3 <= 5
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0 <= p_car_green_t4 <= 5
0 <= p_car_green_t5 <= 5
0 <= p_car_green_t6 <= 5
0 <= p_car_orange_t0 <= 5
0 <= p_car_orange_t1 <= 5
0 <= p_car_orange_t2 <= 5
0 <= p_car_orange_t3 <= 5
0 <= p_car_orange_t4 <= 5
0 <= p_car_orange_t5 <= 5
0 <= p_car_orange_t6 <= 5

1.5 Solve POC Model with Classical Solver

In order to assess our later quantum algorithm it is of great advantage to know the exact solution
of (QCIO). For small POC examples such as we are considering here this solution can be computed
by a classical solver. Qiskit provides two such solvers (CplexOptimizer and GurobiOptimizer) in
qiskit_optimization.algorithms.

Remark: Further information is available at [8].

1.5.1 Toy Example: Classical Solver

We solve qcio from above with CplexOptimizer.

[21]: from qiskit_optimization.algorithms import CplexOptimizer

cplex_optimizer = CplexOptimizer()

qcio_minimization_result = cplex_optimizer.solve(qcio)

print("minimum point: p_min = ", qcio_minimization_result.x)
print("minimum value: f_1(p_min) = ", qcio_minimization_result.fval)

minimum point: p_min = [3. 2. 0. 3. 0. 0. 0. 0. 0. 3. 0. 3. 3. 3.]
minimum value: f_1(p_min) = 58.0

The array qcio_minimization_result.x corresponds to a solution ~pmin =

(
~p0,min

~p1,min

)
of (QCIO),

where ~p0,min and ~p1,min correspond to solutions for car_green and car_orange, respectively.

[24]: print("minimum point for car_green: p_0,min = "
f"{qcio_minimization_result.x[0:charging_unit.number_time_slots]}")

print("minimum point for car_orange: p_1,min = "
f"{qcio_minimization_result.x[charging_unit.number_time_slots:]}")

minimum point for car_green: p_0,min = [3. 2. 0. 3. 0. 0. 0.]
minimum point for car_orange: p_1,min = [0. 0. 3. 0. 3. 3. 3.]

We can plot the solution with the provided function plot_charging_schedule
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[25]: from utils import plot_charging_schedule

fig = plot_charging_schedule(
charging_unit, qcio_minimization_result.x, marker_size=20)

fig.update_layout(width=400, height=300)
fig.show()

Recalling our toy example, see Section 1.2.1 and Figure 1.1, we see that this is indeed an optimal
solution.

1.6 Convert QCIO to a QUBO

Later we want to solve our optimization problem (QCIO) with the quantum algorithm QAOA. This
algorithm requires our optimization problem in a different form, which will derive in this section.

Recall that (QCIO) was given by

min
~p∈{0,...,L}KT

f1(~p ) such that C~p = ~e , where f1(~p ) = ~p tA~p .

In the sequence we transform (QCIO) by the following two steps:

Step 1: Convert hard constraints to soft constraints.
This means include C~p = ~e into the cost function.

Step 2: Binary encoding of integer variables ~p.
This means to transform the problem such that we have binary variables ~b.

1.6.1 Convert Hard to Soft Constraints

For a penalty parameter % ≥ 0 we define

f2(~p ; %) = f1(~p ) + %‖C~p− ~e ‖22 .

Note that f2 is also a quadratic cost function with

f2(~p ; %) = ~p tÂ%~p+ L̂%~p+ ĉ% ,
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where

Â% = A+ %CtC , L̂% = −2%~e tC , ĉ% = %‖~e ‖22 .

Now, we have (for a fixed penalty parameter %) a quadratic unconstrained integer optimiza-
tion problem

min
~p∈{0,...,L}KT

f2(~p ; %) . (QUIO)

It is important to note that if % is chosen large enough then the solution of (QUIO) is also a solution
of (QCIO). On the other hand, this means that choosing % too small can lead to unfeasible
solutions, i.e. solutions ~p of (QUIO) that do not satisfy the constraint C~p = ~e of (QCIO).

1.6.2 Binary Encoding

A binary encoding is given by a transformation matrix B such that ~p = B~b, where the coefficients
bi of ~b are binary, i.e. bi ∈ {0, 1}.

By substituting ~p = B~b in (QUIO) we get a quadratic unconstrained binary optimization
problem

min
~b∈{0,1}Ñ

f3(~b ; %) , (QUBO)

where
f3(~b ; %) = ~b

t
Ã%~b+ L̃%~b+ c̃%, Ã% = BtÂ%B , L̃% = L̂%B, c̃% = ĉ% .

In the next lines we give a simple example of a binary encoding and refer to the literature for
advanced encodings.

Toy example: fixed width binary encoding

Let w = 3 be a fixed encoding width. Then, we can represent every component pi ∈ {0, 1, . . . , 5} of
our vector ~p by

pi = bi,0 · 20 + bi,1 · 21 + bi,2 · 22 =
(
20 21 22

)︸ ︷︷ ︸
B̃

bi,0bi,1
bi,2


︸ ︷︷ ︸

~bi

, ~bi ∈ {0, 1}3.

Using this, we can write

~p =

 p0
...

pN−1

 =


B̃

B̃
. . .

B̃


︸ ︷︷ ︸

B

 ~b0
...

~bN−1


︸ ︷︷ ︸

~b

, N = KT.
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Note that the dimension increases: ~p has N = KT entries, whereas ~b has Ñ = wKT entries.

Other binary encodings

Further information on encondings and more examples can be found in [14]. Also the bounded-
coefficient encoding, which Qiskit uses by default, is proposed in this paper (see the docu-
mention of the class qiskit_optimization.converters.IntegerToBinary).

Remarks

1) It is easy to prove that the matrix Ã% in (QUBO) can always be transformed such that it is an
upper triangular matrix:

Ã% =


∗ ∗ . . . ∗ ∗
0 ∗ . . . ∗ ∗
...

. . .
...

0 0 . . . ∗ ∗
0 0 . . . 0 ∗

 .

This also holds true for A and Â%. We note this here because Qiskit will save the matrices in such
a way.

2) In this tutorial we consider the original form of QAOA, i.e. the Quantum Approximate Opti-
mization Algorithm. An adaption of this algorithm is the Quantum Alternating Operator Ansatz
[4] (often also abbreviated with QAOA), where hard constraints are handled differently and thus
Step 1 is not needed. Many examples can be found in [4] and also in [15].

1.6.3 Implementation

Next, we write a class Converter the implements the upper transformations. For this we use the
following Qiskit classes:

• QuadraticProgramConverter: This is the abstract class for converters of quadratic programs
in Qiskit. It enforces that we implement the methods convert and interpret in our class
Converter.

• LinearEqualityToPenalty: For Step 1.
• IntegerToBinary: For Step 2.

[30]: from typing import Union
from qiskit_optimization.converters import QuadraticProgramConverter, \

LinearEqualityToPenalty, IntegerToBinary

class Converter(QuadraticProgramConverter):
def __init__(

self,
penalty: float=None # the penalty parameter for step 1

) -> None:
super().__init__()
self._penalty = penalty
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self.linear_equality_to_penalty_converter = \
LinearEqualityToPenalty(penalty)

self.integer_to_binary_converter = IntegerToBinary()

def convert(self, quadratic_program: QuadraticProgram) -> QuadraticProgram:
return self.integer_to_binary_converter.convert(

self.linear_equality_to_penalty_converter.convert(quadratic_program))

def interpret(self, x: Union[np.ndarray, List[float]]) -> np.ndarray:
return self.linear_equality_to_penalty_converter.interpret(

self.integer_to_binary_converter.interpret(x))

1.6.4 Toy Example: Convert to QUBO

Let us use our Converter to convert qcio.

[17]: # Note: penalty <= 5.0 will give a non-feasible solution,
# penalty > 5.0 will give a feasible solution.
converter = Converter(penalty=5.1)
qubo = converter.convert(qcio)
qubo.name = "QUBO"
print(qubo.prettyprint())

Problem name: QUBO

Minimize
6.1*p_car_green_t0@0ˆ2 + 24.4*p_car_green_t0@0*p_car_green_t0@1
+ 24.4*p_car_green_t0@0*p_car_green_t0@2
+ 10.2*p_car_green_t0@0*p_car_green_t1@0
+ 20.4*p_car_green_t0@0*p_car_green_t1@1
+ 20.4*p_car_green_t0@0*p_car_green_t1@2
+ 10.2*p_car_green_t0@0*p_car_green_t2@0
+ 20.4*p_car_green_t0@0*p_car_green_t2@1
+ 20.4*p_car_green_t0@0*p_car_green_t2@2
+ 10.2*p_car_green_t0@0*p_car_green_t3@0
+ 20.4*p_car_green_t0@0*p_car_green_t3@1
+ 20.4*p_car_green_t0@0*p_car_green_t3@2
+ 2*p_car_green_t0@0*p_car_orange_t0@0
+ 4*p_car_green_t0@0*p_car_orange_t0@1
+ 4*p_car_green_t0@0*p_car_orange_t0@2 + 24.4*p_car_green_t0@1ˆ2
+ 48.8*p_car_green_t0@1*p_car_green_t0@2
...

Subject to
No constraints

Binary variables (42)
p_car_green_t0@0 p_car_green_t0@1 p_car_green_t0@2
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p_car_green_t1@0 p_car_green_t1@1 p_car_green_t1@2
...

We can verify that the number of binary variables has grown in comparison with the number of
integer variables:

[33]: number_integer_variables = qcio.get_num_integer_vars()
print(f"Number integer variables: {number_integer_variables}")

number_binary_variables = qubo.get_num_binary_vars()
print(f"Number binary variables: {number_binary_variables}")

Number integer variables: 14
Number binary variables: 42

As a last step let’s retrieve the matrix Ã from qubo and make a plot of its sparsity pattern.

[34]: A_tilde = qubo.objective.quadratic.to_array()
print(f"Dimension: {A_tilde.shape}")

Dimension: (42, 42)

[51]: import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.spy(A_tilde, markersize=3)

In Notebook 4 we will discuss the meaning and the importance of the sparsity pattern.

1.6.5 Solve with a Classical Solver

Analog to (QCIO) we can use a classical solver to solve (QUBO). In the next cells we do this for
our qubo from above.

20



[21]: qubo_minimization_result = cplex_optimizer.solve(qubo)

print("minimum point (binary): b_min = ", qubo_minimization_result.x)
print("minimum value: f_3(b_min) = ", qubo_minimization_result.fval)

minimum point (binary): b_min = [1. 0. 1. 1. 0. 0. 1. 0. 1. 1. 0. 0. 0. 0. 0. 0.␣
↪→0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 1. 0. 1. 1. 0. 1. 1. 0.]

minimum value: f_3(b_min) = 57.999999999999886

The array qubo_minimization_result.x corresponds to a solution ~bmin of (QUBO). With the
method interpret of converter we can transform the binary vector ~bmin to the integer vector ~pmin
(which is a feasible solution of (QCIO) if % is chosen large enough).

[22]: b_min = qubo_minimization_result.x
p_min = converter.interpret(b_min)

print("minimum point (integer): p_min = ", p_min)
print("minimum value: f_1(p_min) = ", qcio.objective.evaluate(p_min))
print("minimum point feasible = ", qcio.is_feasible(p_min))

minimum point (integer): p_min = [3. 1. 3. 1. 0. 0. 0. 0. 2. 0. 2. 2. 3. 3.]
minimum value: f_1(p_min) = 58.0
minimum point feasible = True

Last, let’s plot the solution:

[23]: fig = plot_charging_schedule(charging_unit, p_min, marker_size=20)
fig.update_layout(width=400, height=300)
fig.show()
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Notebook 2

2.1 Introduction

In Notebook 1 we have seen how to model and implement (a proof of concept version of) a real-world
problem on optimizing the charging schedules for electric vehicles. Moreover, we showed how to
transform and implement this problem as a QUBO which is the required form for the Quantum
Approximate Optimization Algorithm (QAOA) [2] .

In this notebook we will introduce QAOA, explain how a QAOA circuit can be derived from a
QUBO and how it can be implemented in Qiskit.

We will demonstrate these points with a small example from the use case introduced in Notebook
1.

2.2 Example for this Notebook

Our example for this whole notebook is a charging station with 4 charging levels and 4 avail-
able time slots. One car is at the charging station at time slots 0, 1 and 2, and needs to
charge 4 energy units. The situation is depicted in Figure 2.1.

Figure 2.1: Example for this notebook.

The following cell implements the upper situation based on our codes from Notebook 1.

[1]: from codes_notebook_1 import generate_example
charging_unit, car_green, qcio, converter, qubo, \
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number_binary_variables, qubo_minimization_result = generate_example()

[2]: print(charging_unit)
print(car_green)

Charging unit with
charging levels: 0, 1, 2, 3
time slots: 0, 1, 2, 3
cars to charge: car_green

Car 'car_green':
at charging station at time slots [0, 1, 2]
requires 4 energy units

Let us compute an exact solution so that we have a reference to compare our quantum solution
with.

[3]: b_min = qubo_minimization_result.x
f_3_min = qubo_minimization_result.fval
print("minimum point (binary): b_min = ", b_min)
print("minimum value: f_3(b_min) = ", f_3_min)

minimum point (binary): b_min = [0. 1. 1. 0. 1. 0. 0. 0.]
minimum value: f_3(b_min) = 5.999999999999993

[4]: p_min = converter.interpret(b_min)
f_1_min = qcio.objective.evaluate(p_min)
p_min_feasible = qcio.is_feasible(p_min)

print("minimum point (integer): p_min = ", p_min)
print("minimum value: f_1(p_min) = ", f_1_min)
print("minimum point feasible = ", p_min_feasible)

minimum point (integer): p_min = [2. 1. 1. 0.]
minimum value: f_1(p_min) = 6.0
minimum point feasible = True

[5]: from utils import plot_charging_schedule
fig = plot_charging_schedule(

charging_unit, p_min, marker_size=30)
fig.update_layout(width=350, height=300)
fig.show()
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2.3 Revision: QUBO

In Notebook 1 we discussed how a QUBO can be derived from an optimization use case. For this
notebook we move the use case more in the background and write a QUBO in the general form

min
~b∈{0,1}n

f3(~b), f3(~b) = ~b tA~b+ L~b+ c , A ∈ Rn×n, L ∈ Rn×1, c ∈ R. (QUBO)

From now on, if we refer to (QUBO) we mean the problem above.

A first step to solve (QUBO) with QAOA is to transform it into an Ising Hamiltonian [3, 18].

2.4 Convert QUBO to Ising Hamiltonian

2.4.1 Theory

We write the QUBO cost function f3 as

f3(~b) =
n−1∑
i=0

n−1∑
j>i

aijbibj +
n−1∑
i=0

libi + c ,

where aij and li are the entries of A and L, respectively. Subsequently, we replace

bi ↔ 1
2

(
I⊗n − σ(i)Z

)
,

where

I⊗n = I ⊗ · · · ⊗ I︸ ︷︷ ︸
n times

, I =

(
1 0
0 1

)
,

and

σ
(i)
Z = I ⊗ · · · ⊗ I ⊗ Z︸︷︷︸

position i

⊗ I ⊗ · · · ⊗ I , Z =

(
1 0
0 −1

)
.

This gives the cost (or problem) Hamiltonian HP , which is of the form
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HP =

n−1∑
i=0

n−1∑
j>i

hijσ
(i)
Z σ

(j)
Z +

n−1∑
i=0

h′iσ
(i)
Z + h′′I⊗n , (2.1)

where the coefficients hij , h′i and h
′′ can be computed from aij , li and c.

The following theorem establishes the connection between the QUBO cost function f3 and the cost
Hamiltonian HP .

Theorem For a quantum state |ψ〉 with amplitudes λb, i.e.

|ψ〉 =
∑

~b∈{0,1}n
λb|b〉 , λb ∈ C ,

∑
~b∈{0,1}n

|λb|2 = 1 ,

we have
〈ψ|HP |ψ〉 =

∑
~b∈{0,1}n

|λb|2f3(~b) . (2.2)

Remark 1 : By writing b instead of ~b we mean the bitstring b = b0b1 . . . bn−1 associated with the
vector ~b = (b0, b1, . . . , bn−1)

t.

Remark 2: Since this tutorial is concerned with practical aspects of quantum computing we leave
out the mathematical details and derivations. However, it is a good exercise to do the computation
QUBO → Ising and to prove the theorem.

2.4.2 Implementation

In Notebook 1 we already got to know the class QuadraticProgram. In particular, qubo is an object
of this class. Now, we need this class’ method to_ising since it implements the transformation
discussed above. However, note that to_ising splits HP into two parts, namely

• ising that contains the first two terms of the RHS of (2.1), and

• ising_offset which contains the third term of the RHS of (2.1).

[6]: ising, ising_offset = qubo.to_ising()

[7]: print("ising: ", ising)

ising: -3.3 * IIIIIIIZ
- 6.599999999999998 * IIIIIIZI
- 3.3000000000000007 * IIIIIZII
- 6.6 * IIIIZIII
- 3.2999999999999994 * IIIZIIII
- 6.599999999999999 * IIZIIIII
+ 4.6 * IIIIIIZZ
+ 1.8 * IIIIIZIZ
+ 3.6 * IIIIIZZI
+ 3.6 * IIIIZIIZ
+ 7.2 * IIIIZIZI
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+ 4.6 * IIIIZZII
+ 1.8 * IIIZIIIZ
+ 3.6 * IIIZIIZI
+ 1.8 * IIIZIZII
+ 3.6 * IIIZZIII
+ 3.6 * IIZIIIIZ
+ 7.2 * IIZIIIZI
+ 3.6 * IIZIIZII
+ 7.2 * IIZIZIII
+ 4.6 * IIZZIIII
- 1.5 * IZIIIIII
+ 1.0 * ZZIIIIII
- 3.0 * ZIIIIIII

[8]: print("ising_offset:", ising_offset)

ising_offset: 28.400000000000013

Let’s verify Equation (2.2) with the following state

|ψ〉 = 0.7 |00011100〉+ 0.2i |10101010〉+ (0.6 +
√
0.11i) |11110000〉 .

For this purpose we use the following classes from qiskit.opflow:

• DictStateFn to represent |ψ〉 and

• OperatorStateFn with parameter is_measurement=True to represent the observable HP and
to calculate the expecation value 〈ψ|HP |ψ〉 .

Remark: For a tutorial on qiskit.opflow see [7].

[9]: import numpy as np
from qiskit.opflow import DictStateFn, OperatorStateFn

psi = DictStateFn({"00011100": 0.7,
"10101010": 0.2j,
"11110000": 0.6+1j*np.sqrt(0.11)})

# Note that observable does not contain ising_offset
observable = OperatorStateFn(ising, is_measurement=True)

expectation_wo_offset = np.real(observable.eval(psi))
expectation = expectation_wo_offset + ising_offset

print("<psi | H_P | psi> = ", expectation)

<psi | H_P | psi> = 16.268000000000015

Before we calculate the RHS of (2.2) we recall that Qiskit uses a different ordering of the qubits
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than most textbooks and different to the default ordering in Python. In fact, we have

ordering textbooks/Python: |b0 . . . bn−1〉 ↔ ordering Qiskit: |bn−1 . . . b0〉

It is important to note that methods like QuadraticObjective.evaluate or
QuadraticProgramConverter.interpret expect their input in the textbook/Python or-
dering.

With this knowledge we can implement the RHS of (2.2):

[10]: result = 0
for bitstring, amplitude in psi.primitive.items():

# Convert string to array and CHANGE ORDERRING
bitarray = np.fromiter(bitstring, int)[::-1]
result += (np.abs(amplitude)**2) * qubo.objective.evaluate(bitarray)

print("sum_b |lambda_b|^2 f_3(b) = ", result)

sum_b |lambda_b|ˆ2 f_3(b) = 16.267999999999994

2.5 QAOA: Theory

QAOA aims to construct a quantum state

|ψ〉 =
∑

~b∈{0,1}n
λb |b〉

that has amplitudes λb with large absolute value for those basis states |b〉 where f3(~b) is small
(or even better where f3 is minimal). Measuring such a quantum state will result with high
probability in a bitstring ~b∗ that is a (nearly) optimal solution of (QUBO).

Equation (2.2) describes that such a quantum state can be obtained by minimizing the expectation
value 〈ψ|HP |ψ〉. In fact, for

|ψmin〉 =
∑

~b∈{0,1}n
λb,min |b〉 with |ψmin〉 = argmin

|ψ〉∈H⊗n

〈ψ|HP |ψ〉

we have that every basis state |b〉 with λb,min 6= 0 is a minimum of f3. Here H⊗n is the space of all
n qubit states.

In order to construct an approximation of such an optimal state QAOA starts at the uniform
superposition

|+〉⊗n = |+〉 ⊗ · · · ⊗ |+〉︸ ︷︷ ︸
n times

, |+〉 = 1√
2

(
|0〉+ |1〉

)
,

and then alternatingly applies p times a phase operator UP and a mixing operator UM :

|ψQAOA(~β,~γ)〉 = UM (βp−1)UP (γp−1) · · · UM (β0)UP (γ0)|+〉⊗n . (QAOA-1)
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Here, ~β = (β0, . . . , βp−1)
t ∈ [0, π]p and ~γ = (γ0, . . . , γp−1)

t ∈ Rp are parameters, and the phase and
mixing operator are given by

UP (γ) = exp(−iγHP ) and UM (β) = exp(−iβHM ),

respectively. The mixer HM is defined by

HM =
n−1∑
i=0

σ
(i)
X , σ

(i)
X = I ⊗ · · · ⊗ I ⊗ X︸︷︷︸

place i

⊗ I ⊗ · · · ⊗ I, X =

(
0 1
1 0

)
.

Following the reasoning above the parameters ~β and ~γ in (QAOA-1) should be chosen such that the
expectation value

e(~β,~γ) = 〈ψQAOA(~β,~γ)|HP |ψQAOA(~β,~γ)〉 (QAOA-2)

is minimized, i.e.

(~β∗, ~γ∗) = argmin
~β,~γ

e(~β,~γ) . (QAOA-3)

Then, measuring |ψQAOA(~β
∗, ~γ∗)〉 should result in a bitstring ~b∗ that is a good approximation of

the minimum of f3, i.e.
f3(~b

∗) ≈ min
~b∈{0,1}n

f3(~b) .

2.5.1 Classical Optimizers

The minimization task (QAOA-3) can be carried out by a classical optimizer (as e.g. provided in
qiskit.algorithms.optimizers).

Very roughly speaking such an optimizer works in the following way: Starting from initial
guesses ~β(0) and ~γ(0) it computes iteratively a next set of parameters ~β(j+1) and ~γ(j+1) with
e(~β(j+1), ~γ(j+1)) ≤ e(~β(j), ~γ(j)), j = 0, 1, . . . . In this way ~β(j+1) and ~γ(j+1) approach ~β∗ and
~γ∗ of (QAOA-3) with every iteration. Clearly, in order to do the step ~β(j), ~γ(j) y ~β(j+1), ~γ(j+1)

the value of e in (~β(j), ~γ(j)) and (usually) the values of e(~β(j) + ~hβ, ~γ
(j) + ~hγ) for some ~hβ,~hγ (to

compute a gradient) are needed.

We see that this is a hybrid workflow, where for a given set of parameters the quantum state
in (QAOA-1) is constructed on a quantum computer and the evaluation (QAOA-2) is computed
from measurements of this quantum state. From this evaluation (and usually evaluations of small
variations of the given parameters to obtain a gradient) a classical optimizer proposes a next set
of parameters and the process starts from the beginning. In this way (QAOA-3) is iteratively
approximated.

We note that this optimization is usually a difficult task and for many applications, initial guesses,
hyperparameter choices, etc. the classical optimizer gets stuck in a local minimum and is not
able to converge to the global minimum given by the optimal parameters ~β∗ and ~γ∗. Another
issue are barren plateaus where the gradient vanishes exponentially. We refer to [1, 16] for more
insights into these problems.
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Remark 1: We usually omit the dependence on ~β and ~γ and just write |ψQAOA〉 = |ψQAOA(~β,~γ)〉.

Remark 2: Note that UP (γ), UM (β), HP , and HM are 2n×2n matrices whereas A is a n×n matrix.
Also note that if f3 depends on % also HP , UP (γ) and |ψQAOA〉 depend on %.

2.6 QAOA: Implementation

A quantum circuit that implements (QAOA-1) can be obtained from the class QAOAAnsatz.

In the next cell we use this class to get a QAOA circuit with p = 2 for our cost Hamiltonian ising
from above.

[11]: from qiskit.circuit.library import QAOAAnsatz

qaoa_reps = 2 # this corresponds to the parameter p in (QAOA)
qaoa_ansatz = QAOAAnsatz(cost_operator=ising, reps=qaoa_reps, name='qaoa')
qaoa_ansatz.measure_active()

[12]: qaoa_ansatz.decompose(reps=1).draw(scale=0.5, fold=-1)

[12]:

Note in which order qaoa_ansatz expects its parameters:

[13]: qaoa_ansatz.parameters

[13]: ParameterView([ParameterVectorElement(β[0]), ParameterVectorElement(β[1]),
ParameterVectorElement(γ[0]), ParameterVectorElement(γ[1])])

Let us execute the circuit on a simulator for some arbitrarily chosen parameters and visualize the
result.

[28]: betas = [1.23, 2.31]
gammas = [3.21, 4.32]

# See above the ordering that qaoa_ansatz expects
parameter_values = [*betas, *gammas]
parameters = qaoa_ansatz.parameters
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parameter_bindings = dict(zip(parameters, parameter_values))

qaoa_with_parameters = qaoa_ansatz.bind_parameters(parameter_bindings)

[15]: qaoa_with_parameters.decompose(reps=1).draw(scale=0.5, fold=-1)

[15]:

[16]: from qiskit_aer import AerSimulator

number_of_shots = 8000
aer_simulator = AerSimulator(method="statevector", shots=number_of_shots)

# Decompose the circuit such that the gates can be simulated with the
# AerSimulator
qaoa_with_parameters_decomposed = qaoa_with_parameters.decompose(reps=3)

result = aer_simulator.run(qaoa_with_parameters_decomposed).result()

[17]: from qiskit.visualization import plot_histogram

counts = result.get_counts()

# Plot the 40 bitstrings with the highest count.
plot_histogram(

counts,
number_to_keep=40,
sort="value_desc",
bar_labels=False,
figsize=(10,5))

[17]:
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Next, let us calculate the expectation value for our result and for the bitstring with the highest
count/probability.

[19]: sqrt_probabilities = {bitstring: np.sqrt(count/number_of_shots) \
for bitstring, count in counts.items()}

expectation = np.real(observable.eval(sqrt_probabilities)) \
+ ising_offset

print(f"e({betas}, {gammas}) = ", expectation)

e([1.23, 2.31], [3.21, 4.32]) = 39.16945000000001

[20]: bitstring_highest_prob = max(
sqrt_probabilities, key=lambda key: sqrt_probabilities[key])

print("bitstring with highest probability:", bitstring_highest_prob)

bitstring with highest probability: 10111111

[20]: expectation = np.real(observable.eval(bitstring_highest_prob)) \
+ ising_offset

print(f"<{bitstring_highest_prob} | H_P | {bitstring_highest_prob}> = "
f"{expectation}")

<10111111 | H_P | 10111111> = 121.0
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Remembering from above that the minimum value of f3 (and of f1) is 6.0, we see that the solution
of QAOA is not good. A main reason for this is that our parameters betas and gammas were not
optimized. We do this in the next section.

2.7 QAOA: Classical Optimization

First, we need to write a function that has as input numerical values for the QAOA parameters
~β,~γ and computes the expectation value e(~β,~γ), see (QAOA-2), as output. We name this func-
tion energy_evaluation to be consistent with other Qiskit implementations, most importantly
qiskit.algorithms.QAOA. The term energy comes from applications of the VQE algorithm and
means the same as expectation. It is not connected to the term energy as used in our electric
vehicle use case, where it refers to the energy the electric cars need to charge.

[22]: from typing import List

def energy_evaluation(parameter_values: List[float]):
"""parameter_values is expected to be of
the form [beta_0, beta_1, ..., gamma_0, gamma_1, ...]"""
parameter_bindings = dict(zip(qaoa_ansatz.parameters, parameter_values))

qaoa_with_parameters = qaoa_ansatz.bind_parameters(parameter_bindings)
qaoa_with_parameters_decomposed = qaoa_with_parameters.decompose(reps=3)

result = aer_simulator.run(qaoa_with_parameters_decomposed).result()
counts = result.get_counts()
sqrt_probabilities = {bitstring: np.sqrt(count/number_of_shots) \

for bitstring, count in counts.items()}

expectation = np.real(observable.eval(sqrt_probabilities)) + ising_offset

return expectation

We test our implementation with betas and gammas from Section 2.6.

[22]: energy_evaluation([*betas, *gammas])

[22]: 39.09017500000002

We see that we get nearly the same result as above. The small difference is due to statistical errors
stemming from the fact that from a finite number of shots (see number_shots in the code) the
expectation value 〈ψ|HP |ψ〉 cannot be computed exactly. This effect is also known as shot noise
[12].

Having this function we can use a classical optimizer, as e.g. provided in
qiskit.algorithms.optimizers. We will use the COBYLA optimizer and random initial
guesses for our parameters. These can be implemented e.g. with NumPy’s default random
generator.
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[23]: # Run this cell only once if you want changing random numbers in the cell below
random_generator = np.random.default_rng(1234)

[24]: from qiskit.algorithms.optimizers import COBYLA

betas_initial_guess = np.pi*random_generator.random(qaoa_reps)
gammas_initial_guess = 2*np.pi*random_generator.random(qaoa_reps)
parameter_values_initial_guess = [*betas_initial_guess, *gammas_initial_guess]

cobyla_optimizer = COBYLA()

result_optimization = cobyla_optimizer.minimize(
fun=energy_evaluation, x0=parameter_values_initial_guess)

parameter_values_optimized = result_optimization.x
energy_optimized = result_optimization.fun
# Number of evalutions of energy_evaluation
number_function_evaluations = result_optimization.nfev

print(f"Optimized parameters: {parameter_values_optimized}")
print(f"Expectation value: {energy_optimized}")
print(f"Number function evaluations: {number_function_evaluations}")

Optimized parameters: [3.18220113 1.19369043 5.75551235 1.65220983]
Expectation value: 19.25527500000001
Number function evaluations: 45

Let’s run the QAOA circuit with the optimized parameters.

[25]: parameter_bindings = dict(
zip(qaoa_ansatz.parameters, parameter_values_optimized))

qaoa_with_parameters = qaoa_ansatz.bind_parameters(parameter_bindings)
qaoa_with_parameters_decomposed = qaoa_with_parameters.decompose(reps=3)

result = aer_simulator.run(qaoa_with_parameters_decomposed).result()
counts = result.get_counts()

[26]: # Plot the 40 bitstrings with the highest count.
plot_histogram(

counts,
number_to_keep=40,
sort="value_desc",
bar_labels=False,
figsize=(10,5))

[26]:

33



[28]: sqrt_probabilities = {bitstring: np.sqrt(count/number_of_shots) \
for bitstring, count in counts.items()}

bitstring_highest_prob = max(
sqrt_probabilities, key=lambda key: sqrt_probabilities[key])

print(f"bitstring with highest probability: {bitstring_highest_prob}")

expectation = np.real(observable.eval(bitstring_highest_prob)) \
+ ising_offset

print(f"<{bitstring_highest_prob} | H_P | {bitstring_highest_prob}> = "
f"{expectation}")

bitstring with highest probability: 01010101
<01010101 | H_P | 01010101> = 7.6000000000000085

We see that the result is considerably improved compared with the non-optimized parameters from
above. You can also rerun the optimization procedure so that other inital values are used.

2.8 (Optional) Advanced Knowledge: Gate Synthesis

In the remaining part of the notebook we discuss how (QAOA-1) can be implemented, i.e. which
gates are needed to synthesize the unitary operations and verify that Qiskit’s implementation of
QAOA indeed uses theses gates. This will become technical and you can skip to the next notebook
without problems.

The calculations below rely on the following identities:
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1) For commuting matrices A and B, i.e. [A,B] = AB −BA = 0, we have

eA+B = eAeB = eBeA.

2) For a Pauli-string S = P1 ⊗ P2 ⊗ · · · ⊗ Pn, Pj ∈ {I,X, Y, Z}, we have

exp(iθS) = cos(θ)I⊗n + i sin(θ)S .

In particular, this means

exp(iθσ
(k)
P ) = I⊗k ⊗ exp(iθP )⊗ I⊗(n−k−1), P ∈ {X,Y, Z}.

Note that eA and exp(A) are the same function and we use the form that gives the clearest notation.

2.8.1 Gates for Uniform Superposition

The initial state |+〉⊗n can easily be obtained by

|+〉⊗n = H⊗n |0〉⊗n = (H ⊗ · · · ⊗H︸ ︷︷ ︸
n times

)| 0 . . . 0︸ ︷︷ ︸
n times

〉, H = 1√
2

(
1 1
1 −1

)
.

Here, H is the Hadamard gate.

2.8.2 Gates for Mixing Operator

For the mixing operator we have

UM (β) = exp(−iβHM )

= exp
(
−iβ

∑
k

σ
(k)
X

)
=
∏
k

exp
(
−iβσ(k)X

)
=
(
exp(−iβX)⊗ I ⊗ · · · ⊗ I

)
· · ·
(
I ⊗ . . . I ⊗ exp(−iβX)

)
Recall that the RX gate is given by

RX(θ) = exp(−i θ2X) .

This means the RX gate applied on qubit k is

RXk(θ) = I⊗k ⊗ exp(−i θ2X)⊗ In−k−1 .

Thus, the mixing operator can be implemented as

UM (β) = RX0(2β)RX1(2β) · · ·RXn−1(2β) .

Note that since every rotation acts on a different qubit all gates can be implemented in parallel.
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2.8.3 Gates for Phase Operator

For the phase operator we have

UP (γ) = exp(−iγHP )

= exp
(
−iγ

(∑
k

∑
l>k

hklσ
(k)
Z σ

(l)
Z +

∑
k

h′kσ
(k)
Z + h′′I⊗n

))
= exp

(
−iγ

∑
k

∑
l>k

hklσ
(k)
Z σ

(l)
Z

)
exp
(
−iγ

∑
k

h′kσ
(k)
Z

)
exp
(
−iγh′′I⊗n

)
.

The third factor on the RHS is just a multiplication with a global phase e−iγh
′′ . Since this part is

not included in Qiskit’s ising (see ising_offset above) we ignore it for the remaining section.

By the same computations as for the mixing operator the second factor can be written as

exp
(
−iγ

∑
k

h′kσ
(k)
Z

)
= RZ0(2γh

′
0)RZ1(2γh

′
1) · · ·RZn−1(2γh′n−1) ,

where the RZ gate is given by

RZ(θ) = exp(−i θ2Z) .

Note that contrary to the mixing operator now the rotation angle also depends on the coeffi-
cients h′k.

For the first factor we have

exp
(
−iγ

∑
k

∑
l>k

hklσ
(k)
Z σ

(l)
Z

)
=
∏
k

∏
l>k

exp
(
−iγhklσ

(k)
Z σ

(l)
Z

)
=
∏
k

∏
l>k

RZZk,l(2γhkl)

= RZZ0,1(2γh01)RZZ0,2(2γh02) · · ·RZZn−2,n−1(2γhn−2,n−1) ,

since

σ
(k)
Z σ

(l)
Z = I⊗k ⊗ Z ⊗ I⊗(l−k−1) ⊗ Z ⊗ I⊗(n−l−1) ,

and since the RZZ gate is defined by

RZZ(θ) = exp
(
−i θ2Z ⊗ Z

)
.

Again note that the rotation angle not only depends on γ but also on the coeffiecients hkl.
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2.8.4 Implementation

Let us verify that indeed we get a quantum circuit with the gates discussed in the previous three
sections. To see this we have to decompose qaoa_ansatz a different number of times. For simplicity
we now choose p = 1.

[28]: qaoa_ansatz = QAOAAnsatz(cost_operator=ising, reps=1, name='qaoa')

Decompose once

With this decomposition we see that

|ψQAOA〉 = UM (β0)UP (γ0) |+〉⊗n

= exp
(
−iβ0

∑
k

σ
(k)
X

)
exp
(
−iγ0

(∑
k

∑
l>k

hklσ
(k)
Z σ

(l)
Z +

∑
k

h′kσ
(k)
Z

))
H⊗n |0〉⊗n .

Recall: Mathematical formulas are read right to left whereas quantum circuits are read left to right.

[29]: qaoa_ansatz.decompose(reps=1).draw(scale=0.5, fold=-1)

[29]:
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Decompose two times

Here we see

UM (β0) =
∏
k

exp
(
−iβ0σ(k)X

)
,

and

UP (γ0) =
∏
k

∏
l>k

exp
(
−iγ0hklσ

(k)
Z σ

(l)
Z

)∏
k

exp
(
−iγ0h′kσ

(k)
Z

)
.
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[30]: qaoa_ansatz.decompose(reps=2).draw(scale=0.5, fold=-1)

[30]:
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Decompose three times

With this decomposition we see

UM (β0) = RX0(2β0)RX1(2β0) · · ·RXn−1(2β0) ,

as well as

UP (γ0) = RZZ0,1(2γ0h01)RZZ0,2(2γ0h02) · · ·RZZn−2,n−1(2γ0hn−2,n−1) RZ0(2γ0h
′
0) · · ·RZn−1(2γ0h′n−1) .

[31]: qaoa_ansatz.decompose(reps=3).draw(scale=0.5, fold=-1)

[31]:

Compare this also with the coefficient of ising (but recall the different ordering of Qiskit)

[32]: print(ising)

-3.3 * IIIIIIIZ
- 6.599999999999998 * IIIIIIZI
- 3.3000000000000007 * IIIIIZII
- 6.6 * IIIIZIII
- 3.2999999999999994 * IIIZIIII
- 6.599999999999999 * IIZIIIII
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+ 4.6 * IIIIIIZZ
+ 1.8 * IIIIIZIZ
+ 3.6 * IIIIIZZI
+ 3.6 * IIIIZIIZ
+ 7.2 * IIIIZIZI
+ 4.6 * IIIIZZII
+ 1.8 * IIIZIIIZ
+ 3.6 * IIIZIIZI
+ 1.8 * IIIZIZII
+ 3.6 * IIIZZIII
+ 3.6 * IIZIIIIZ
+ 7.2 * IIZIIIZI
+ 3.6 * IIZIIZII
+ 7.2 * IIZIZIII
+ 4.6 * IIZZIIII
- 1.5 * IZIIIIII
+ 1.0 * ZZIIIIII
- 3.0 * ZIIIIIII
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Notebook 3

3.1 Introdution

In Notebook 1 we presented a real-world use case for optimizing charging schedules for electric cars,
reduced it to a proof of concept model, and transformed it to a QUBO. Then, in Notebook 2 we
presented the quantum algorithm QAOA and how the associated quantum circuits can be obtained.
However, these circuits cannot directly be executed on a real quantum computer but they first need
to be transpiled. In this notebook we will implement this process. Moreover, we will present how
results from a quantum computer can be post-processed.

We will demonstrate these points with the same example as used in Notebook 2 enriched with the
implementations that where derived there.

3.2 Example for this Notebook

[1]: from codes_notebook_2 import generate_example
charging_unit, car_green, qcio, converter, qubo, \

number_binary_variables, qubo_minimization_result, \
ising, ising_offset, qaoa_reps, qaoa_circuit = generate_example()

[2]: print(charging_unit)
print(car_green)

Charging unit with
charging levels: 0, 1, 2, 3
time slots: 0, 1, 2, 3
cars to charge: car_green

Car 'car_green':
at charging station at time slots [0, 1, 2]
requires 4 energy units

[3]: b_min = qubo_minimization_result.x
f_3_min = qubo_minimization_result.fval
print("minimum point (binary): b_min = ", b_min)
print("minimum value: f_3(b_min) = ", f_3_min)
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minimum point (binary): b_min = [0. 1. 1. 0. 1. 0. 0. 0.]
minimum value: f_3(b_min) = 5.999999999999993

[4]: p_min = converter.interpret(b_min)
f_1_min = qcio.objective.evaluate(p_min)
p_min_feasible = qcio.is_feasible(p_min)

print("minimum point (integer): p_min = ", p_min)
print("minimum value: f_1(p_min) = ", f_1_min)
print("minimum point feasible = ", p_min_feasible)

minimum point (integer): p_min = [2. 1. 1. 0.]
minimum value: f_1(p_min) = 6.0
minimum point feasible = True

[5]: from utils import plot_charging_schedule
fig = plot_charging_schedule(

charging_unit, p_min, marker_size=30)
fig.update_layout(width=350, height=300)
fig.show()

[6]: print(ising)

-3.3 * IIIIIIIZ
- 6.599999999999998 * IIIIIIZI
- 3.3000000000000007 * IIIIIZII
- 6.6 * IIIIZIII
- 3.2999999999999994 * IIIZIIII
- 6.599999999999999 * IIZIIIII
+ 4.6 * IIIIIIZZ
+ 1.8 * IIIIIZIZ
+ 3.6 * IIIIIZZI
+ 3.6 * IIIIZIIZ
+ 7.2 * IIIIZIZI
+ 4.6 * IIIIZZII
+ 1.8 * IIIZIIIZ
+ 3.6 * IIIZIIZI
+ 1.8 * IIIZIZII
+ 3.6 * IIIZZIII
+ 3.6 * IIZIIIIZ
+ 7.2 * IIZIIIZI
+ 3.6 * IIZIIZII
+ 7.2 * IIZIZIII
+ 4.6 * IIZZIIII
- 1.5 * IZIIIIII
+ 1.0 * ZZIIIIII
- 3.0 * ZIIIIIII
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3.3 Access to IBMQ

We start this notebook with the access to IBMQ systems. Note that this can (and probably will)
change in the future and also depends on your membership to an IBMQ Hub. We therefore cannot
guarantee that the following code cells work for everybody. A starting point what things need to
be adapted can be found here or ask your local IBMQ Hub admin.

In order to access IBMQ systems one needs a personal token. For a more comfortable access we can
save this token in a binary pickle file with the provided function save_token. After having saved
your token you can load it with load_token.

If you don’t have access to real backends you can skip the following four cells and use a fake
backend as described next.

[ ]: from utils import save_token, load_token

# Note: For different URLs you might need different tokens.
# Note: You only have to do this once per token.
# save_token(
# token="_your_token_",
# file_name="_filename_for_your_saved_token_")

# Use the following line if you have saved your token:
# token = load_token("_filename_for_your_saved_token_")
# Otherwise, put your token in the following line:
token = "_your_token_"

[ ]: from qiskit import IBMQ
from qiskit.providers.ibmq.exceptions import IBMQAccountError, \

IBMQProviderError
from qiskit.providers.ibmq.api.exceptions import RequestsApiError

# The following URL belongs to the Fraunhofer-DE hub:
api_url = "https://auth.de.quantum-computing.ibm.com/api"
# The following URL belongs to the US hub:
# api_url = "https://auth.quantum-computing.ibm.com/api"

try:
IBMQ.enable_account(token, api_url)

except IBMQAccountError as e:
if not (e.args[0] == "An IBM Quantum Experience account "

"is already in use for the session."):
raise IBMQAccountError

except RequestsApiError as e:
print(f"Error: {e.message}\n"

"-> Check if the URL and your token are correct.")
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[ ]: from qiskit.providers.ibmq.exceptions import IBMQProviderError

try:
# If you belong to the Fraunhofer Hub your parameters should
# look likes this EXCEPT you need to adapat project='...':

provider = IBMQ.get_provider(
hub='fraunhofer-de',
group='fhg-all',
project='fiao01')

# If you use the open access quantum systems your parameters
# should look likes this:
# provider = IBMQ.get_provider(
# group='open',
# project='main')
except IBMQProviderError as e:

print(f"Error: {e.message}\n"
"-> Check your parameters in IBMQ.get_provider\n"
"-> If you don't have access to IBMQ quantum systems "
"use the fake backend below.")

[ ]: from qiskit.providers.exceptions import QiskitBackendNotFoundError

# Depending on your access to real backends choose an appropriate backend here.
try:

real_backend = provider.get_backend("ibmq_ehningen")
except NameError:

print("Error: You first have to instantiate a provider object "
"with the code in the cell above.")

except QiskitBackendNotFoundError as e:
list_backends = [backend.name() for backend in provider.backends()]
print(f"Error: backend not found. You only have access to: {list_backends}")

Fake backends are provided among others in qiskit.providers.fake_provider.

[7]: from qiskit.providers.fake_provider import FakeKolkata
fake_kolkata = FakeKolkata()

In the next cell we decide which backend we want to use for the remaining notebook.

[8]: # backend = real_backend
backend = fake_kolkata

number_shots = 8000
backend.set_options(shots=number_shots)
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3.4 Transpilation Pipeline

It is important to know that current quantum computers (still) suffer from

• a limited set of gates that they can execute (see basis gates below),
• noisy qubits and erroneous gates (see x, sx and cx errors below),
• limited connectivity between individual qubits (see coupling map below),
• measurement errors (see error map below), and
• many other shortcomings.

Among others the task of a transpilation is to address these issues. Before we build a transpilation
pipeline let us shortly visualize these problems.

3.4.1 Analysis of Quantum Backend

In the following code cells we access and visualize different properties of our (fake) quantum backend.
If you don’t have access to a real quantum computer you can look at the plots for the system
ibmq_ehningen in Appendix A.

[9]: print(f"Basis gates of {backend.name()}: "
f"{backend.configuration().basis_gates}")

Basis gates of fake_kolkata: ['id', 'rz', 'sx', 'x', 'cx', 'reset']

[10]: from qiskit.visualization import plot_gate_map

print("Coupling map of", backend.name())
plot_gate_map(backend)

Coupling map of fake_kolkata
[10]:

[11]: backend.configuration().coupling_map

[11]: [[0, 1],
[1, 0],
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[1, 2],
[1, 4],
[2, 1],
[2, 3],
[3, 2],
[3, 5],
[4, 1],
...
[24, 25],
[25, 22],
[25, 24],
[25, 26],
[26, 25]]

[12]: from qiskit.visualization import plot_error_map

plot_error_map(backend, figsize=(10,6))

[12]:

[13]: x_errors = []
sx_errors = []
cx_errors = []

backend_properties = backend.properties()

for qubit in range(backend.configuration().n_qubits):
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x_errors.append(backend_properties.gate_error("x", qubit))
sx_errors.append(backend_properties.gate_error("sx", qubit))

for qubit0, qubit1 in backend.configuration().coupling_map:
cx_errors.append(backend_properties.gate_error("cx", [qubit0, qubit1]))

[14]: import numpy as np
import plotly.graph_objects as go

fig = go.Figure()
fig.add_trace(go.Scatter(

x=np.arange(backend.configuration().n_qubits),
y=x_errors,
mode="lines+markers",
name="x error",
marker_size=10

))
fig.add_trace(go.Scatter(

x=np.arange(backend.configuration().n_qubits),
y=sx_errors,
mode="lines+markers",
name="sx error",
marker_symbol="x"

))
fig.update_xaxes(

title="qubit")
fig.update_yaxes(

title="error")
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[15]: fig = go.Figure()
fig.add_trace(go.Scatter(

x=list(map(str, backend.configuration().coupling_map)),
y=cx_errors,
mode="lines+markers",
name="CNOT error"

))
fig.update_xaxes(

title="[qubit0, qubit1]")
fig.update_yaxes(

title="CNOT error")

3.4.2 Standard Transpilation

In the following, we demonstrate how to build a transpilation pipeline based on the QAOA example
from Notebook 2. Since the transpilation process in Qiskit is changed and improved frequently we
only briefly sketch how a good transpilation pipeline looks like today (end of 2022). For future use
[10, 21] could provide a state of the art pipeline.

Let’s begin by drawing the QAOA circuit.

[16]: qaoa_circuit.decompose(reps=3).draw(scale=1)

[16]:
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...
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Now, we want to use Qiskit’s transpiler to transpile this circuit. It is important to know that
the transpiler has stochastic components which can be varied to obtain a good transpilation of
a given quantum circuit. The stochastic components can be controlled with a seed. If we provide
the transpiler with a list of seeds we will get a list of differently transpiled circuits.

[17]: from qiskit.compiler import transpile

seeds_for_transpiler = [k for k in range(40)]
number_seeds_for_transpiler = len(seeds_for_transpiler)

qaoa_circuit_transpilations = transpile(
[qaoa_circuit]*number_seeds_for_transpiler,
backend=backend,
optimization_level=3,
seed_transpiler=seeds_for_transpiler)

print(f"We have {len(qaoa_circuit_transpilations)} "
"different transpilations of the QAOA circuit.")

We have 40 different transpilations of the QAOA circuit.

[18]: # Put here a number between 0 and number_seeds_for_transpiler
number = 6

qaoa_circuit_transpilations[number].draw()

[18]:
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...

...
...
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Clearly, now the question arises which circuit is the best. There are many metrics one can consider
in order to answer this question. Probably the most simple one is to count the CNOT gates and
take the circuit with the smallest count. The background for this metric is that the CNOT gate is
the gate with highest error rate (see above).

[19]: number_cnots = np.array([circuit.count_ops()["cx"]
for circuit in qaoa_circuit_transpilations])

index_circuit_with_least_cnots = np.argmin(number_cnots)
print(f"The circuit with index {index_circuit_with_least_cnots} "

"has the least CNOTs.")

The circuit with index 12 has the least CNOTs.

[20]: qaoa_circuit_best = \
qaoa_circuit_transpilations[index_circuit_with_least_cnots]

Now that we have our best transpiled circuit we can apply some techniques to mitigate errors.

3.4.3 Lowering Decoherence and Dephasing via Dynamical Decoupling

Dynamical decoupling is a technique to lower decoherence and dephasing. In its simplest form we
apply a X-X-gate sequence. For further details see [19].

[21]: from qiskit.circuit.library import XGate
from qiskit.transpiler import PassManager, InstructionDurations
from qiskit.transpiler.passes import PadDynamicalDecoupling, ALAPScheduleAnalysis

instruction_durations = InstructionDurations.from_backend(backend)
dynamical_decoupling_sequence = [XGate(), XGate()]
pulse_alignment = backend.configuration().timing_constraints["pulse_alignment"]
pass_manager = PassManager([

ALAPScheduleAnalysis(instruction_durations),
PadDynamicalDecoupling(

instruction_durations,
dynamical_decoupling_sequence,
pulse_alignment=pulse_alignment

)
])

qaoa_circuit_best = pass_manager.run(qaoa_circuit_best)

[22]: qaoa_circuit_best.draw()

[22]:
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3.4.4 Measurement Error Mititgation

Measurement errors [12] can e.g. be mitigated with the M3 package [11, 20].

[23]: import mthree
mit = mthree.M3Mitigation(backend)
mit_final_measurement_mapping = \

mthree.utils.final_measurement_mapping(qaoa_circuit_best)

3.4.5 Run Transpiled Circuit on Backend

Now let’s run our circuit on the backend.

[24]: # The below provided values for the QAOA parameters
# stem from an optimization as discussed in Notebook 2
betas = [3.99890724, 2.72012026]
gammas = [6.11303759, 1.75840967]
qaoa_parameter_values = [*betas, *gammas]

parameter_bindings = \
dict(zip(qaoa_circuit_best.parameters, qaoa_parameter_values))

qaoa_circuit_best_with_parameters = \
qaoa_circuit_best.bind_parameters(parameter_bindings)

Note: If you have a real backend you will get in the job queue when executing the next cells.
Instead you can also proceed to Section 3.4.6 and work with the provided data.

[25]: # Run job to get calibration data for measurement error mitigation.
# Ignore a possible warning.
mit.cals_from_system(mit_final_measurement_mapping, async_cal=True)

[26]: # Run transpiled QAOA circuit
job = backend.run(qaoa_circuit_best_with_parameters, job_name="qaoa_test_job")
print("job is sent to backend")
print("job_id: ", job.job_id())

job is sent to backend
job_id: 4cb2e677-b52a-4d20-a854-2ffac1905101

[27]: from qiskit_aer.jobs import AerJob

# Write info about job into job_list.txt (if using a real backend)
if not isinstance(job, AerJob):

with open("job_list.txt", "at") as f:
f.write(f"creation date: {job.creation_date()}, "

+ f"backend: {backend.name()}, "
+ f"job name: {job.name()}, "
+ f"job id: {job.job_id()}\n")
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[28]: # Get measurement error mitigation matrices.
mit_matrices = mit.cals_to_matrices()

[29]: # Wait for jobs to finish.
print("Status qaoa job:", job.status())

Status qaoa job: JobStatus.DONE

Save results

[30]: from pathlib import Path
import pickle
from utils import convert_to_date_and_time_string

assert job.done(), "Job is not finished."

result = job.result()

experiment_data = {
"result": result,
"qaoa_circuit_best_with_parameters": qaoa_circuit_best_with_parameters,
"backend_properties": backend.properties(),
"mit_matrices": mit_matrices,
"mit_final_measurement_mapping": mit_final_measurement_mapping,
# and all other meta data you need

}

# Add more data in the case of real backend.
if not isinstance(job, AerJob):

experiment_data["job_properties"] = job.properties()
# and all other meta data you need

result_time_stamp = convert_to_date_and_time_string(result.date)
experiment_data_file_path = Path(

f"{result_time_stamp}_"
f"{backend.name()}_"
"qaoa_experiment_data").with_suffix(".pickle")

with open(experiment_data_file_path, "wb") as f:
pickle.dump(experiment_data, f)

3.4.6 Postprocessing

In the rest of the notebook we are concerned with the processing of our result from the backend for
which we will use the big data tool pandas. But first let us load our saved results.

[31]: from pathlib import Path
import pickle
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# Load your data ...
# experiment_data_file_path = \
# Path("path_to_your_experiment_data").with_suffix(".pickle")
#
# or use the provided data from ibmq_ehningen ...
# experiment_data_file_path = \
# Path("2022_09_22-14h47m_ibmq_ehningen_qaoa_experiment_data").with_suffix(".
↪→pickle")

experiment_data_file_path = \
Path("2022_09_23-08h42m_ibmq_ehningen_qaoa_experiment_data").with_suffix(".

↪→pickle")
#
# or from fake_kolakata
# experiment_data_file_path = \
# Path("2022_12_06-15h31m_fake_kolkata_qaoa_experiment_data").with_suffix(".
↪→pickle")

with open(experiment_data_file_path, "rb") as f:
experiment_data = pickle.load(f)

result = experiment_data["result"]
mit_matrices = experiment_data["mit_matrices"]
mit_final_measurement_mapping = experiment_data["mit_final_measurement_mapping"]

Let us retrieve the counts from our result object and put it in a DataFrame together with the
respective bitstring. Then, let us add a column with the probabilities, which we can compute from
the counts.

[32]: import pandas as pd

experiment_counts = result.get_counts()
number_shots = sum(experiment_counts.values())

# Create the DataFrame from experiment_counts.
experiment_df = pd.DataFrame.from_dict(data={

"bit_string": experiment_counts.keys(),
"count": experiment_counts.values()})

# Add column probability.
experiment_df["probability"] = \

experiment_df["count"]/number_shots

experiment_df

[32]: bit_string count probability
0 00000000 49 0.006125
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1 00000001 58 0.007250
2 00010000 112 0.014000
3 00010001 167 0.020875
4 00010010 130 0.016250
.. ... ... ...
249 11111011 6 0.000750
250 11111100 6 0.000750
251 11111101 7 0.000875
252 11111110 12 0.001500
253 11111111 4 0.000500

[254 rows x 3 columns]

Next, we create a DataFrame with the probabilities stemming from applying the measurement error
mitigation to the counts from our experiment.

[33]: import mthree

mit = mthree.M3Mitigation()
mit.cals_from_matrices(mit_matrices)

experiment_quasi_distribution = \
mit.apply_correction(experiment_counts, mit_final_measurement_mapping)

experiment_mitigated_probabilities = \
experiment_quasi_distribution.nearest_probability_distribution()

experiment_mitigated_df = pd.DataFrame.from_dict(data={
"bit_string": experiment_mitigated_probabilities.keys(),
"probability_mit": experiment_mitigated_probabilities.values()})

experiment_mitigated_df

[33]: bit_string probability_mit
0 01100001 0.000017
1 10000000 0.000019
2 10000101 0.000022
3 01001010 0.000024
4 01100100 0.000030
.. ... ...
246 00011000 0.025836
247 00110110 0.026571
248 00010110 0.029771
249 00011110 0.034682
250 00111110 0.034965

[251 rows x 2 columns]

Now, let’s merge our two DataFrames and visualize the result.
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[34]: experiment_df = experiment_df.merge(
experiment_mitigated_df, how="outer", on="bit_string")

experiment_df.fillna(0.0, inplace=True)

experiment_df

[34]: bit_string count probability probability_mit
0 00000000 49 0.006125 0.005830
1 00000001 58 0.007250 0.007232
2 00010000 112 0.014000 0.013703
3 00010001 167 0.020875 0.022115
4 00010010 130 0.016250 0.016376
.. ... ... ... ...
249 11111011 6 0.000750 0.000755
250 11111100 6 0.000750 0.000704
251 11111101 7 0.000875 0.000893
252 11111110 12 0.001500 0.001518
253 11111111 4 0.000500 0.000455

[254 rows x 4 columns]

[35]: # Plot first 40 bit_strings and probability
experiment_df.iloc[0:40,:].plot.bar(

x="bit_string", y=["probability", "probability_mit"])

[35]: <AxesSubplot:xlabel='bit_string'>
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For the remaining section let’s focus on the 20 data with the highest probability. We first do some
preparations, namely adding columns with bit_array and integer_array, so that we can apply
qubo.objective.evaluate and qcio.is_feasible later (see Notebook 1, also note the different
ordering conventions).

[36]: import numpy as np

experiment_df_top20 = \
experiment_df.sort_values("probability", ascending=False).iloc[0:20, :]

experiment_df_top20["bit_array"] = \
experiment_df_top20["bit_string"].apply(

lambda bitstring: np.fromiter(bitstring, dtype=int)[::-1])

experiment_df_top20["integer_array"] = \
experiment_df_top20["bit_array"].apply(converter.interpret)

# Change order of columns.
experiment_df_top20 = experiment_df_top20[

["bit_string", "bit_array","integer_array",
"count", "probability", "probability_mit"]]
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experiment_df_top20.reset_index(inplace=True, drop=True)

experiment_df_top20

[36]: bit_string bit_array integer_array count \
0 00111110 [0, 1, 1, 1, 1, 1, 0, 0] [2.0, 3.0, 3.0, 0.0] 261
1 00011110 [0, 1, 1, 1, 1, 0, 0, 0] [2.0, 3.0, 1.0, 0.0] 260
2 00010110 [0, 1, 1, 0, 1, 0, 0, 0] [2.0, 1.0, 1.0, 0.0] 226
3 00110110 [0, 1, 1, 0, 1, 1, 0, 0] [2.0, 1.0, 3.0, 0.0] 204
4 00011000 [0, 0, 0, 1, 1, 0, 0, 0] [0.0, 2.0, 1.0, 0.0] 198
5 00011101 [1, 0, 1, 1, 1, 0, 0, 0] [1.0, 3.0, 1.0, 0.0] 183
6 00011010 [0, 1, 0, 1, 1, 0, 0, 0] [2.0, 2.0, 1.0, 0.0] 180
7 00011001 [1, 0, 0, 1, 1, 0, 0, 0] [1.0, 2.0, 1.0, 0.0] 174
8 00010001 [1, 0, 0, 0, 1, 0, 0, 0] [1.0, 0.0, 1.0, 0.0] 167
9 00010011 [1, 1, 0, 0, 1, 0, 0, 0] [3.0, 0.0, 1.0, 0.0] 166
10 00110100 [0, 0, 1, 0, 1, 1, 0, 0] [0.0, 1.0, 3.0, 0.0] 159
11 00110000 [0, 0, 0, 0, 1, 1, 0, 0] [0.0, 0.0, 3.0, 0.0] 154
12 00111001 [1, 0, 0, 1, 1, 1, 0, 0] [1.0, 2.0, 3.0, 0.0] 152
13 00111010 [0, 1, 0, 1, 1, 1, 0, 0] [2.0, 2.0, 3.0, 0.0] 151
14 00011111 [1, 1, 1, 1, 1, 0, 0, 0] [3.0, 3.0, 1.0, 0.0] 143
15 00111000 [0, 0, 0, 1, 1, 1, 0, 0] [0.0, 2.0, 3.0, 0.0] 140
16 00010111 [1, 1, 1, 0, 1, 0, 0, 0] [3.0, 1.0, 1.0, 0.0] 136
17 00111100 [0, 0, 1, 1, 1, 1, 0, 0] [0.0, 3.0, 3.0, 0.0] 134
18 00110111 [1, 1, 1, 0, 1, 1, 0, 0] [3.0, 1.0, 3.0, 0.0] 133
19 00010101 [1, 0, 1, 0, 1, 0, 0, 0] [1.0, 1.0, 1.0, 0.0] 133

probability probability_mit
0 0.032625 0.034965
1 0.032500 0.034682
2 0.028250 0.029771
3 0.025500 0.026571
4 0.024750 0.025836
5 0.022875 0.024802
6 0.022500 0.023610
7 0.021750 0.023181
8 0.020875 0.022115
9 0.020750 0.022423
10 0.019875 0.020464
11 0.019250 0.019782
12 0.019000 0.020227
13 0.018875 0.019463
14 0.017875 0.019263
15 0.017500 0.017681
16 0.017000 0.018043
17 0.016750 0.017082
18 0.016625 0.017772
19 0.016625 0.017476
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[37]: experiment_df_top20.plot.bar(
x="bit_string", y=["probability", "probability_mit"])

[37]: <AxesSubplot:xlabel='bit_string'>

Since we only have 20 rows in our dataframe it is not too costly to apply qubo.objective.evaluate
and qcio.is_feasible. This gives us a good overview what could be a good solution candidate
(i.e. it is feasible and has low cost).

[38]: experiment_df_top20["cost"] = \
experiment_df_top20["bit_array"].apply(qubo.objective.evaluate)

experiment_df_top20["is_feasible"] = \
experiment_df_top20["integer_array"].apply(qcio.is_feasible)

experiment_df_top20

[38]: bit_string bit_array integer_array count \
0 00111110 [0, 1, 1, 1, 1, 1, 0, 0] [2.0, 3.0, 3.0, 0.0] 261
1 00011110 [0, 1, 1, 1, 1, 0, 0, 0] [2.0, 3.0, 1.0, 0.0] 260
2 00010110 [0, 1, 1, 0, 1, 0, 0, 0] [2.0, 1.0, 1.0, 0.0] 226
3 00110110 [0, 1, 1, 0, 1, 1, 0, 0] [2.0, 1.0, 3.0, 0.0] 204
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4 00011000 [0, 0, 0, 1, 1, 0, 0, 0] [0.0, 2.0, 1.0, 0.0] 198
5 00011101 [1, 0, 1, 1, 1, 0, 0, 0] [1.0, 3.0, 1.0, 0.0] 183
6 00011010 [0, 1, 0, 1, 1, 0, 0, 0] [2.0, 2.0, 1.0, 0.0] 180
7 00011001 [1, 0, 0, 1, 1, 0, 0, 0] [1.0, 2.0, 1.0, 0.0] 174
8 00010001 [1, 0, 0, 0, 1, 0, 0, 0] [1.0, 0.0, 1.0, 0.0] 167
9 00010011 [1, 1, 0, 0, 1, 0, 0, 0] [3.0, 0.0, 1.0, 0.0] 166
10 00110100 [0, 0, 1, 0, 1, 1, 0, 0] [0.0, 1.0, 3.0, 0.0] 159
11 00110000 [0, 0, 0, 0, 1, 1, 0, 0] [0.0, 0.0, 3.0, 0.0] 154
12 00111001 [1, 0, 0, 1, 1, 1, 0, 0] [1.0, 2.0, 3.0, 0.0] 152
13 00111010 [0, 1, 0, 1, 1, 1, 0, 0] [2.0, 2.0, 3.0, 0.0] 151
14 00011111 [1, 1, 1, 1, 1, 0, 0, 0] [3.0, 3.0, 1.0, 0.0] 143
15 00111000 [0, 0, 0, 1, 1, 1, 0, 0] [0.0, 2.0, 3.0, 0.0] 140
16 00010111 [1, 1, 1, 0, 1, 0, 0, 0] [3.0, 1.0, 1.0, 0.0] 136
17 00111100 [0, 0, 1, 1, 1, 1, 0, 0] [0.0, 3.0, 3.0, 0.0] 134
18 00110111 [1, 1, 1, 0, 1, 1, 0, 0] [3.0, 1.0, 3.0, 0.0] 133
19 00010101 [1, 0, 1, 0, 1, 0, 0, 0] [1.0, 1.0, 1.0, 0.0] 133

probability probability_mit cost is_feasible
0 0.032625 0.034965 79.6 False
1 0.032500 0.034682 28.4 False
2 0.028250 0.029771 6.0 True
3 0.025500 0.026571 28.4 False
4 0.024750 0.025836 8.6 False
5 0.022875 0.024802 14.6 False
6 0.022500 0.023610 12.6 False
7 0.021750 0.023181 6.0 True
8 0.020875 0.022115 16.4 False
9 0.020750 0.022423 10.0 True
10 0.019875 0.020464 10.0 True
11 0.019250 0.019782 12.6 False
12 0.019000 0.020227 28.4 False
13 0.018875 0.019463 49.4 False
14 0.017875 0.019263 51.4 False
15 0.017500 0.017681 16.6 False
16 0.017000 0.018043 14.6 False
17 0.016750 0.017082 32.4 False
18 0.016625 0.017772 51.4 False
19 0.016625 0.017476 6.6 False

Let’s plot two solutions from the dataframe above.

[39]: row_number_1 = 2 # choose a number between 0 and 19
row_number_2 = 6 # choose a number between 0 and 19

[40]: fig = plot_charging_schedule(
charging_unit,
experiment_df_top20["integer_array"].iloc[row_number_1],
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marker_size=20)
fig.update_layout(width=400, height=300)
fig.show()

[41]: fig = plot_charging_schedule(
charging_unit,
experiment_df_top20["integer_array"].iloc[row_number_2],
marker_size=20)

fig.update_layout(width=400, height=300)
fig.show()

3.4.7 Compare with Exact Simulation

In order to judge how good QAOA was executed on the real quantum computer we can compare it
with the result of an exact simulation (a statevector simulation without shot noise).

[42]: from qiskit.providers.aer import AerSimulator
from qiskit.compiler import transpile

aer_simulator = AerSimulator(method="statevector")

qaoa_circuit_for_exact_simulation = qaoa_circuit.copy()
qaoa_circuit_for_exact_simulation.remove_final_measurements()
qaoa_circuit_for_exact_simulation.save_state()

qaoa_circuit_for_exact_simulation = transpile(
qaoa_circuit_for_exact_simulation,
basis_gates=aer_simulator.configuration().basis_gates)

parameter_bindings = dict(
zip(qaoa_circuit_for_exact_simulation.parameters, qaoa_parameter_values))

qaoa_circuit_for_exact_simulation = \
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qaoa_circuit_for_exact_simulation.bind_parameters(parameter_bindings)

job = aer_simulator.run(qaoa_circuit_for_exact_simulation)
result_exact_simulation = job.result()

Such a simulation has a Statevetor object as result.

[43]: statevector_exact_simulation = result_exact_simulation.get_statevector()
print(statevector_exact_simulation)

Statevector([-2.19237435e-03+4.73527294e-05j,
9.36596020e-03+4.63441187e-03j,
2.20883527e-06+5.24193322e-04j,
8.90791252e-03+6.83746374e-03j,
9.36596020e-03+4.63441187e-03j,
2.09261296e-02+1.38949582e-01j,
5.14211808e-06-9.66312497e-04j,

-4.59808754e-03+3.90829328e-02j,
2.20883527e-06+5.24193322e-04j,
...
8.24173563e-04-8.22140766e-04j,

-5.44605429e-04-1.92611140e-03j,
3.05595401e-03-2.21578751e-03j,
8.24173563e-04-8.22140766e-04j,
1.98750175e-03-1.13018901e-04j],

dims=(2, 2, 2, 2, 2, 2, 2, 2))

Let’s transform this into a DictStateFn to be compatible with the data type of the result from the
real backend.

[44]: from qiskit.opflow import VectorStateFn

dict_state_fn_exact_simulation = \
VectorStateFn(statevector_exact_simulation).to_dict_fn()

[45]: exact_simulation_df = pd.DataFrame(data={
"bit_string": dict_state_fn_exact_simulation.primitive.keys(),
"amplitude": dict_state_fn_exact_simulation.primitive.values()

})
exact_simulation_df["probability"] = \

exact_simulation_df["amplitude"].abs()**2

[46]: exact_simulation_df

[46]: bit_string amplitude probability
0 00000000 -0.002192+0.000047j 4.808748e-06
1 00000001 0.009366+0.004634j 1.091990e-04
2 00000010 0.000002+0.000524j 2.747835e-07
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3 00000011 0.008908+0.006837j 1.261018e-04
4 00000100 0.009366+0.004634j 1.091990e-04
.. ... ... ...
251 11111011 0.000824-0.000822j 1.355178e-06
252 11111100 -0.000545-0.001926j 4.006500e-06
253 11111101 0.003056-0.002216j 1.424857e-05
254 11111110 0.000824-0.000822j 1.355178e-06
255 11111111 0.001988-0.000113j 3.962936e-06

[256 rows x 3 columns]

Now, we can merge the dataframes from the real backend and from the simulation and plot the
results.

[47]: experiment_df = experiment_df.merge(
exact_simulation_df[["bit_string", "probability"]],
how="outer",
on="bit_string",
suffixes=["", "_exact"])

experiment_df.fillna(0.0, inplace=True)

[48]: experiment_df

[48]: bit_string count probability probability_mit probability_exact
0 00000000 49.0 0.006125 0.005830 4.808748e-06
1 00000001 58.0 0.007250 0.007232 1.091990e-04
2 00010000 112.0 0.014000 0.013703 1.091990e-04
3 00010001 167.0 0.020875 0.022115 1.974489e-02
4 00010010 130.0 0.016250 0.016376 9.337863e-07
.. ... ... ... ... ...
251 11111101 7.0 0.000875 0.000893 1.424857e-05
252 11111110 12.0 0.001500 0.001518 1.355178e-06
253 11111111 4.0 0.000500 0.000455 3.962936e-06
254 01101000 0.0 0.000000 0.000000 7.846307e-08
255 11101101 0.0 0.000000 0.000000 9.549872e-06

[256 rows x 5 columns]

We conclude this notebook with two plots comparing the probabilities of the results stemming from
the real backend (with and without measurement error mitigation) and from the exact simulation.

[49]: experiment_df.sort_values(
"probability_exact", ascending=False).iloc[0:40, :].plot.bar(

x="bit_string",
y=["probability", "probability_mit", "probability_exact"])

[49]: <AxesSubplot:xlabel='bit_string'>
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[50]: experiment_df.sort_values(
"probability", ascending=False).iloc[0:40, :].plot.bar(

x="bit_string",
y=["probability", "probability_mit", "probability_exact"])

[50]: <AxesSubplot:xlabel='bit_string'>

67



68



Notebook 4

4.1 Introduction

In Notebook 1 we presented a real-world use case for optimizing charging schedules for electric cars,
reduced it to a proof of concept model, and transformed it to a QUBO. Then, in Notebook 2 we
presented the quantum algorithm QAOA and how the associated quantum circuits can be obtained.
Subsequently, in Notebook 3 we explained how these quantum circuits can be transpiled and run on
real quantum computers, and how the results of such experiments can be postprocessed. Building
on this pipeline one can build a series of experiments in order to study how good quantum
computing (with all its limitations in the currentNISQ era) can be employed for our charging
schedule optimization use case. It is exactly a series of such experiments that we will present
in this notebook.

Note: Our main aim with this notebook is to provide and discuss results from quantum computing
experiments. In order to keep this notebook at a reasonable scope we thus don’t provide the detailed
codes but only give the most important parts of them. Together with the knowledge of the previous
notebooks the reader should be able to develop codes by him/herself (if this is desired)

We begin with introducing the two example series on which all our experiments will be based.

4.2 Examples for this Notebook

For all examples in this notebook we consider 1 charging station with 4 charging levels and 4
available time slots.

4.2.1 Example Series 1

As a first series of examples (denoted by example1pX, X=0, 1, 2 or 3) we assume that 1 car is at
the charging station and needs to charge 4 energy units. The examples differ in the duration
that the car is at the charging station, namely:

• example1p0 → car is at charging station at time slot 0.
• example1p1 → car is at charging station at time slots 0, 1.
• example1p2 → car is at charging station at time slots 0, 1, 2.
• example1p3 → car is at charging station at time slots 0, 1, 2, 3.
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Figure 4.1: Visualization of Example Series 1.

4.2.2 Example Series 2

Our second series of examples (denoted by example2pX, X=0, 1, 2, 3 or 4) considers the situation
where 2 cars are at the charging station and both need to charge 4 energy units. Again, the
examples differ in the duration that the cars are at the charging station:

• example2p0 → time slots green car: 0, time slots orange car: 1.
• example2p1 → time slots green car: 0, 1, time slots orange car: 1, 2.
• example2p2 → time slots green car: 0, 1, 2, time slots orange car: 1, 2, 3.
• example2p3 → time slots green car: 0, 1, 2, 3, time slots orange car: 1, 2, 3.
• example2p4 → time slots green car: 0, 1, 2, 3, time slots orange car: 0, 1, 2, 3.

Figure 4.2: Visualization of Example Series 2.

Our first experiments are concerned with the classical optimization part of QAOA.

4.3 Classical Optimization

Recall from Notebook 2 that we want to find parameters ~β and ~γ such that the expectation value
e, given by

e(~β,~γ) = 〈ψQAOA(~β,~γ)|HP |ψQAOA(~β,~γ)〉 ,

is minimized. This means we search for ~β∗ and ~γ∗ that satisfy
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(~β∗, ~γ∗) = argmin
~β,~γ

e(~β,~γ) .

4.3.1 Optimization Landscape

For p = 1 we only have two parameters β0 and γ0 so that the expectation value e(β0, γ0) can
be visualized as a heatmap. We have done this for the following setting:

• We visualize the optimization landscape for parameters in the domain [0, π]× [0, 2π]. For this
purpose we use a fine, equidistant discretization of [0, π] × [0, 2π] with 100 × 200 gridpoints
(β0,j , γ0,k), j = 0, . . . , 99, k = 0, . . . , 199.

• For every grid point (β0,j , γ0,k) we compute the expectation value e(β0,j , γ0,k). This gives a
100× 200 matrix E = (e(β0,j , γ0,k))j,k.

• For the transformation to a QUBO we use as value for the penalty % the minimum value such
that the solution of (QUBO) is a solution of (QCIO).

• We use an exact state vector simulation to compute the expectation value.

In the following figures we see the results, where the expectation value e(β0,j , γ0,k) is visualized
by the color of the point (β0,j , γ0,k) (see the colorscale in the plots).

example1p1, ρ=3.1 example1p2, ρ=3.0

example1p3, ρ=1.1

Figure 4.3: Optimization landscapes for Example Series 1.
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example2p1, ρ=5.1 example2p2, ρ=3.1

example2p3, ρ=3.1 example2p4, ρ=3.1

Figure 4.4: Optimization landscapes for Example Series 2.

We see that the optimization landscapes are fairly complicated with lots of local extrema. This
indicates that it is a hard task for classical optimizers to find the global minimum (depending
on the initial guess (=starting point) for a local optimizer it will get stuck in a local minimum).
Moreover, we already can see that for the bigger examples gradients vanish, see further the so-called
barren plateaus phenomenon [1, 16].

In the next section we report results from a classical optimizer and will indeed experience that
finding good parameters ~β and ~γ is a difficult task.

Code snippet:

from joblib import Parallel, delayed
import plotly.graph_objects as go

beta_mesh = np.linspace(0, np.pi, beta_mesh_grid_points)
gamma_mesh = np.linspace(0, 2*np.pi, gamma_mesh_grid_points)
energies = Parallel(n_jobs=-1)(

delayed(
energy_evaluation # this was defined in Notebook 2

)(
[beta, gamma]

) for beta in beta_mesh for gamma in gamma_mesh
)
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energy_matrix = np.reshape(
energies,
(gamma_mesh.size, beta_mesh.size),
order='F')

fig = go.Figure(
data =

go.Heatmap(
z=np.real(energy_matrix),
x=beta_mesh,
y=gamma_mesh,

))

4.3.2 Results with Optimizer COBYLA

For now following results we used the optimizer COBYLA to minimize e(~β,~γ) for QAOA with
p = 1, 2 and 3. Moreover, we used

• 10 different values for the penalty %, starting from the minimum that gives a feasible solution
and advancing in steps of 0.1.

• For every combination of p and % we ran 50 COBYLA minimizations with random initial
guesses ~β(0) ∈ [0, π]p, ~γ(0) ∈ [0, 2π]p. The remaining parameters of COBYLA where left by
their default values.

• We used an exact state vector simulation to compute the expectation value.

We report the expectation value e( ~β∗, ~γ∗) (termed cost in the figures) below, where ~β∗ and ~γ∗

are the result of the COBYLA minimization:

random ~β(0), ~γ(0)
COBYLA
 ~β∗, ~γ∗ .

The dashed line in the plots corresponds to the solution of the original minimization prob-
lem, i.e. this is the value we try to reach with e( ~β∗, ~γ∗).

Remark: In the subsequence we will often plot results as box plots. In these plots the ends of the
box represent the lower and upper quartiles, while the median (second quartile) is marked by a line
inside the box.
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(a) Results for example1p1.
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(b) Results for example1p3.

Figure 4.5: Results of COBYLA optimization for two subexamples of Example Series 1. We used
p = 1, 2, and 3, and different penalties %. Every dot corresponds to a randomly chosen initial guess
~β(0), ~γ(0). The dasehd line indicates the minimum cost, i.e. the exact solution.
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(a) Results for example2p1.
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Figure 4.6: Results of COBYLA optimization for two subexamples of Example Series 2. We used
p = 1, 2, and 3, and different penalties %. Every dot corresponds to a randomly chosen initial guess
~β(0), ~γ(0). The dasehd line indicates the minimum cost, i.e. the exact solution.

In general, we see a strong dependency (and thus a high variance) of the result of the op-
timization with the choice of the initial values ~β(0) and ~γ(0) (every dot in the upper figures
corresponds to one random choice of the initial values). Comparing the simpler examples with the
more complicated ones, i.e. example1p1 with example1p3 and example2p1 with example2p4, we
observe a higher variance and that QAOA with p = 1 performs poorly for the more complicated
problems (note the accumulation of results at very high expectation values).
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Another observation is that a higher parameter p (as expected) improves the quality of
the QAOA solution. In particuar, for example1p1 we observe that QAOA with p = 3 yields
expectation values near to the exact solution whereas QAOA with p = 1 is bounded away from the
exact solution for every initial choice ~β(0) and ~γ(0).

In summary, we have seen that optimizing the parameters ~β and ~γ is indeed a difficult task. So,
we can conclude that different optimizers should be tested and at least a few different initial values
should be compared. We also observe that the choice of penalty plays a role but can hardly conclude
a recommendation from the data.

With this we end our experiments that solely used a simulator. The following sections deal
with results from real quantum computers. An important first step here is to analyze the
transpilation of our QAOA circuits and the number of basis gates (i.e. the number of gates
that the quantum computing device natively supports) it requires in order to evaluate how well it
can be executed on NISQ computers.

4.4 Analysis of Transpiled QAOA Circuits

In Section 1.6.4 we already saw a sparsity plot of the QUBO matrix. Now, we explain how the
sparsity pattern affects the transpilation of the QAOA circuit associated with the QUBO.

4.4.1 Sparsity of QUBO Matrix and Number of RZZ Gates

Recall from Notebooks 1 and 2 the QUBO cost function

f3(~b) = ~b tA~b+ L~b+ c =

n−1∑
i=0

n−1∑
j>i

aijbibj +

n−1∑
i=0

libi + c ,

and that the transformation bi ↔ 1
2

(
I⊗n − σ(i)Z

)
resulted in the cost Hamiltonian

HP =

n−1∑
i=0

n−1∑
j>i

hijσ
(i)
Z σ

(j)
Z +

n−1∑
i=0

h′iσ
(i)
Z + h′′I⊗n .

Moreover, recall the mixing and the phase operators

UM (β) = exp(−iβHM ), and UP (γ) = exp(−iγHP ) ,

respectively, as well as the gates needed to implement them:

UM (β) = RX0(2β)RX1(2β) · · ·RXn−1(2β) ,

UP (γ) = RZZ0,1(2γh01) · · ·RZZn−2,n−1(2γhn−2,n−1) RZ0(2γh
′
0) · · ·RZn−1(2γh′n−1) .

Observe that we need the one-qubit gates RX and RZ as well as the two-qubit gate RZZ. More
precisely, we obtain one RZZ gate for every coefficient hij 6= 0. It is easy to see that we have
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hij 6= 0 ⇔ aij 6= 0. This means: the sparser the matrix A (= the lesser the number of non-zero
entries in A) the lesser RZZ gates we have in the circuit:

number of non-zero entries of A ⇐⇒ number of RZZ gates in the circuit .

Remark: One can include L into A (in the QUBO cost function f3) because b2i = bi. The resulting
matrix, let’s call it Ã, then can have non-zero diagonal entries ãii = li. However, these entries do
not give rise to a RZZ gate. In this case we have

number of non-zero (off-diagonal) entries of Ã ⇐⇒ number of RZZ gates in the circuit .

Clearly, the question arises why we should be mainly interested in the number of RZZ gates and
can neglect (to a certain degree) the number of the single qubit gates. In order to understand this
we have to analyze the transpilations of the gates.

4.4.2 Transpilation of RX, RZ and RZZ

Let us write a quantum circuit with one RX, one RZ, and one RZZ gate and transpile it to the
basis gates of the current IBM quantum computers (see Notebook 3).

[1]: from qiskit.circuit import QuantumCircuit, Parameter
from qiskit.compiler import transpile

theta = Parameter("$\\theta$")
qc = QuantumCircuit(2)
qc.rx(theta, 0)
qc.barrier()
qc.rz(theta, 0)
qc.barrier()
qc.rzz(theta, 0, 1)
qc.draw()

[1]:

[2]: # See Notebook 3
basis_gates = ['id', 'rz', 'sx', 'x', 'cx', 'reset']
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qc_transpiled = transpile(qc, basis_gates=basis_gates)
qc_transpiled.draw()

[2]:

Note that the RZ gate is a virtual gate and let us thus call the set of basis gates without RZ
the hardware gates. Then, we see that RX requires two single-qubit hardware gates, the RZ
gate needs none, and RZZ needs two two-qubit hardware gates (i.e. the two CNOT gates).
Recalling from Notebook 3 that the CNOT gate is the most erroneous hardware gate (around
one magnitude higher error rate than the two single qubit gates) explains why we have to lay our
focus on the RZZ gates when analyzing how well a QAOA circuit can be executed on real quantum
hardware.

4.4.3 CNOT Gates and Coupling Map

Recall from Notebook 3 that not all qubits in a quantum computer are connected with each other
(see also the coupling map in Figure 4.10). So, let’s see how a CNOT gate is transpiled for two
qubits that are not connected.

[3]: qc = QuantumCircuit(3)
qc.cx(0, 2)
qc.draw()

[3]:
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[4]: # Only qubits 0-1, 1-2 are connected.
coupling_map=[[0, 1], [1, 0], [1, 2], [2, 1]]
qc_transpiled = transpile(

qc,
coupling_map=coupling_map,
initial_layout=[0, 1, 2],
seed_transpiler=123)

qc_transpiled.draw()

[4]:

We see that the transpiler needs to insert a SWAP gate between qubits 1 and 2 in order to realize
the CNOT gate between qubits 0 and 2. Clearly, this raises the question how a SWAP gate is
transpiled to basis gates:

[5]: qc_transpiled = transpile(
qc_transpiled,
coupling_map=coupling_map,
initial_layout=[0, 1, 2],
basis_gates=basis_gates,
seed_transpiler=123)

qc_transpiled.draw()

[5]:
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We see that a SWAP gate requires three CNOT gates! Having in mind the limited coupling map
of current (IBM) quantum computers it is easy to imagine that the denser the QUBO matrix A is
populated (i.e. the more non-zero entries) the more SWAP gates (and therefore CNOT gates) are
needed because many RZZ gates between many different qubits have to be transpiled.

Now, let us observe these effects on our examples.

4.4.4 Example Series 1

Sparsity Pattern of QUBO Matrix

We begin by recalling Example Series 1:

Figure 4.7: Reminder of Example series 1, see Section 4.2.1.

The next plot shows the sparsity pattern of the QUBO matrices.
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example1p0 example1p1

example1p2 example1p3

Figure 4.8: Sparsity pattern of QUBO matrices for Example Series 1.

For these simple examples we can easily derive the structure of the QUBO matrices: We need to
represent the charging level of the car for every time slot 0, 1, 2 and 3. Since we have 4 charging
levels we need 2 qubits to represent the charging level for every time slot. So, we need 4 · 2 = 8
qubits for every example in Example Series 1.

In the plot for example1p0 you can see that we only have a coupling (off-diagonal element) between
qubits 0 – 1, 2 – 3, 4 – 5, and 6 – 7. Every two qubit pair represents the charging level for a time
slot. Since the car in this example is only at the charging station at time slot 0 no coupling between
the different time slots is necessary. This changes for example1p1 where we see a coupling between
qubits 0 – 1 – 2 – 3. This stems from the fact that in this example the car is at the charging station
at time slots 0 and 1, and thus also the qubits involved must be coupled. And so it goes on until
example1p3, where the car is at the charging station for all the time slots and we observe a full
coupling between all the qubits.

Now, let us investigate how the sparsity pattern of the different examples affect the count of basis
gates for QAOA with p = 1.
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Gate Count: Fully Connected Topology

First, let us assume that we have a fully connected topology, i.e. each qubit is connected with
all other qubits. In the following figure we plot the number of hardware gates, i.e. of X,

√
X and

CNOT (in Qiskit: x, sx and cx), and the depth of the circuit for all subexamples of Example Series
1.

example_1p0 example_1p1 example_1p2 example_1p3

10

20

30

40

50

number CNOT gates

number X and SX gates

depth of circuit

qaoa p=1, 8 qubits, fully connected topology, no optimization

Figure 4.9: Number of X,
√
X, and CNOT gates and depth of the transpiled circuits for Example

Series 1 for a fully connected topology.

We see that the number of CNOT gates grows whereas the number of single qubit gates stays
constant. The reason is that the subexamples only differ in the number of time slots that the car is
at the charging station and (as we discussed above) this directly affects the number of RZZ gates
which then directly translate to the number of CNOT gates.

Code snippet:

# See Notebook 3.
backend_basis_gates = ["id", "rz", "sx", "x", "cx", "reset"]
backend_single_qubit_basis_gates = ["sx", "x"]

qaoa_ansatz_transpiled = transpile(
qaoa_ansatz,
basis_gates=backend_basis_gates,
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optimization_level=0) # has no effect in this case

number_cnots = qaoa_ansatz_transpiled.count_ops()['cx']
# The function count_gates is provided in utils.
number_sx_x = count_gates(

qaoa_ansatz_transpiled,
backend_single_qubit_basis_gates)

depth = qaoa_ansatz_transpiled.depth()

Gate Count: ibmq_ehningen

Next, we transpile the QAOA circuits for our example series to the ibmq_ehningen backend.
The hardware gates are the same as above but recall the limited connectivity between the
qubits (see Figure 4.10) that makes it necessary to introduce SWAP gates (which we have seen are
transpiled to three CNOT gates).

Figure 4.10: Coupling map of ibmq_ehningen.

Figure 4.11 shows the results for Example Series 1 transpiled to ibmq_ehningen.
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Figure 4.11: Number of X,
√
X, and CNOT gates and depth of transpiled circuits for Example

Series 1 for ibmq_ehningen. We used 50 different transpiler seeds and optimization levels 1 and 3.

As discussed in Notebook 3 there are many parameters to control the transpilation process.
Two important ones are the optimization_level and the seed_transpiler. For the later we
already explained that it controls the stochastic part of the transpilation process. Looking at the
figures above we see that this can make a significant difference. As demonstrated in Notebook 3 it
is thus a good practice to run a transpilation several times and choose the circuit with the
least CNOT gates. Moreover, we see that a transpilation can be done in many different ways
and so there is much potential for optimization. This is controlled with the optimization_level.
The higher the number, the more optimized the transpiled circuit is but at the expense of more
computation time. We refer to [9, 10, 21] for further information. Looking at the severe restrictions
of NISQ hardware we would recommend optimization_level=3 in order to obtain the best circuits
and take the most of the current potential. However, keep in mind that a higher optimization level
comes at higher cost on the classical computer.

Code snippet:
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ibmq_ehningen = provider.get_backend("ibmq_ehningen")
backend_coupling_map = ibmq_ehningen.configuration().coupling_map
backend_basis_gates = ibmq_ehningen.configuration().basis_gates

seeds_for_transpiler = [k for k in range(50)]
number_seeds_for_transpiler = len(seeds_for_transpiler)

quantum_circuit_transpilations = transpile(
[qaoa_ansatz]*number_seeds_for_transpiler,
coupling_map=backend_coupling_map,
basis_gates=backend_basis_gates,
optimization_level=3, # 0, 1, 2 or 3
seed_transpiler=seeds_for_transpiler)

Gate Count: Comparison

As a last plot for Example Series 1 let us compare the number of CNOT gates between the
fully connected topology and ibmq_ehningen:

example_1p1 example_1p2 example_1p3

20

30

40

50

60

70

80

90
number CNOT gates
ibmq_ehningen,
optimization_level=3, best seed

number CNOT gates
fully connected topology

qaoa p=1, 8 qubits

Figure 4.12: Comparison of number of CNOT gates for Example Series 1 between a fully connected
topology and the best transpilation for ibmq_ehningen.
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We see that the difference in the number of CNOT gates diverges from example_1p1 over exam-
ple_1p2 to example_1p3. This has the reason that the coupling between the variables (i.e. the
non-zero entries in the QUBO matrix) increases from example_1p1 to example_1p3 and that this
coupling is realized via a RZZ gates between the corresponding qubits. The more qubits are con-
nected via RZZ gates the more SWAP gates have to be used in order to compensate for the limited
connectivity of ibmq_ehningen and thus the divergence.

4.4.5 Example Series 2

Now, we present the figures for Example Series 2 for the same experiments as for Example Series
1. We will observe the same effects and thus will only make a few comments.

Sparsity Pattern of QUBO Matrix

As for Example Series 1 we start by recalling Example Series 2:

Figure 4.13: Reminder of Example Series 2, see Section 4.2.2.

The sparsity pattern of the QUBO matrices is given in the next figure:
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example2p0 example2p1 example2p2

example2p3 example2p4

Figure 4.14: Sparsity pattern of the QUBO matrices for Example Series 2.

Note the following differences to Examples Series 1: Clearly, we now need 16 qubits – 8 qubits for
the green car and 8 qubits for the orange car. Moreover, note that we have coupling of qubits 0 – 1
– 8 – 9, 2 – 3 – 10 – 11, 4 – 5 – 12 – 13, 6 – 7 – 14 – 15. These are needed for every time slot to add
the charging level for the green and the orange car. Altogether, we see a more complicated sparsity
pattern of the QUBO matrix and expect that this will translate to deeper circuits with more gates
and eventually a poorer quality from results of real quantum computers.
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Gate Count: Fully Connected Topology

example_2p0 example_2p1 example_2p2 example_2p3 example_2p4
20

40

60

80

100

120

140
number CNOT gates

number X and SX gates

depth of circuit

qaoa p=1, 16 qubits, fully connected topology, no optimization

Figure 4.15: Number of X,
√
X, and CNOT gates and depth of transpiled circuits for Example

Series 2 for a fully connected topology.
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Gate Count: ibmq_ehningen

Figure 4.16: Number of X,
√
X, and CNOT gates and depth of transpiled circuits for Example

Series 2 for ibmq_ehningen. We used 50 different transpiler seeds and optimization levels 1 and 3.
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Gate Count: Comparison

example_2p1 example_2p2 example_2p3 example_2p4
50

100

150

200

250

300
number CNOT gates
ibmq_ehningen,
optimization_level=3, best seed

number CNOT gates
fully connected topology

qaoa p=1, 16 qubits,

Figure 4.17: Comparison of number of CNOT gates for Example Series 2 between a fully connected
topology and the best transpilation for ibmq_ehningen. Here we see the divergence in the number
of CNOT gates between a fully connected quantum computer and ibmq_ehningen even stronger
than in Example Series 1.

In the last part of this notebook we present results from solving Example Series 1 and 2 with QAOA
on ibmq_ehningen.

4.5 QAOA Results on ibmq_ehnigen

Our set up for the experiments reported below is the following:

• We use the best parameters ~β, ~γ, and % that we found in our simulator experiments in
Section 4.3, see Table 4.1. Thus, we can analyze the performance of ibmq_ehningen for
the best possible QAOA circuits.

• We transpile the QAOA circuits with 75 different seeds and optimization level 3. This
transpilation is abbreviated with std in the figures below.

• We additionally add dynamical decoupling to the transpiled circuits (abbreviation then is
dd).

• We employ measurement error mitigation to the std and dd circuits via the package
mthree (abbreviation then is xx_mit, where xx = std or dd)

For more information on the error mitigation techniques see Notebook 3.
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4.5.1 Quality Metric

There are many ways how we can measure the quality of the result of a computation on a real
quantum computer. We will use the fidelity and the expectation value.

Fidelity

In the following we will mainly measure the quality of the probability distribution {qi} stemming
from running the QAOA circuit on ibmq_ehningen by computing the fidelity F with respect to
the probability distribution {pi} from an exact state vector simulation. Thereby, the fidelity is
defined as

F ({pi}, {qi}) =
∑
i

√
piqi ,

see further [17, Chapter 9]. We note that the fidelity is between 0 and 1, where 0
is the worst case and 1 is the best case. In Qiskit the fidelity can be computed via
qiskit.quantum_info.hellinger_fidelity.

Code snippet:

from qiskit.quantum_info import hellinger_fidelity

# See the end of Notebook 3 for experiment_df
fidelity = hellinger_fidelity(

experiment_df["probability_exact"].to_dict(),
experiment_df["probability"].to_dict())

Expectation Value

In Notebook 2 we explained that the expectation value

e(~β,~γ) = 〈ψQAOA(~β,~γ)|HP |ψQAOA(~β,~γ)〉

is connected to the QUBO cost function f3 by

e(~β,~γ) =
∑

b∈{0,1}n
|λb(~β,~γ)|2f3(~b) ,

where the amplitudes λb(~β,~γ) belong to the state |ψQAOA(~β,~γ)〉, i.e.

|ψQAOA(~β,~γ)〉 =
∑

~b∈{0,1}n
λb(~β,~γ)|b〉 .
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This means a low expectation value e indicates that QAOA generates a quantum state |ψQAOA(~β,~γ)〉
with large amplitudes for bit strings b with low cost f3(~b). Thus, measuring e is a meaningful
quality metric, in particular if one compares it to the minimum value of f3, i.e. min~b∈{0,1}n f3(

~b).

In the following sections we first present results from experiments for Example Series 1 and then
close this notebook by presenting results for Example Series 2.

4.5.2 Fidelity, Example Series 1, p = 1

Figure 4.18: Fidelity vs. transpilation method for example1p1 (left), example1p2 (center), and
example1p3 (right). Every dot stems from one of 75 transpilation seeds.

In the upper three plots we can clearly see the influence of the number of CNOT gates. On the left,
we see that a moderate number of CNOTs leads to a fairly high fidelity – with and without
dynamical decoupling. We see some outliers but in general all transpilations lead to a good quality
(the variance between results is small). In the middle we see that for circuits withmore CNOTs the
fidelity for the standard transpilation drops significantly. There are still some circuits that
lead to medium fidelities but also many with poor performance, i.e. the variance of the results is
very high. However, the circuit depth seems to be low enough so that dynamical decoupling
can mitigate many errors and yields considerably better results. On the right plot we see
CNOT numbers that are definitely too high for ibmq_ehningen so that without dynamical
decoupling the fidelity is poor for all transpilations. Adding dynamical decoupling can in some
cases give better results but looking at the high variance we see that there is no guarantee that it
works in general.

4.5.3 Fidelity, p = 1, Different Dates

The error rates of quantum computers are not static but significantly change over time. In the
following figures we observe that this has a drastic effect on the quality of the results obtained
from ibmq_ehningen.

92



(a) Example1p1.

(b) Example1p2.

Figure 4.19: Fidelity vs. transpilation method for example1p1 (upper plots) and example1p2 (lower
plots) on three different dates. Every dot stems from one of 75 transpilation seeds.

Seeing how drastically the quality of our results changes from day to day we recommend running
experiments on a series of different dates and (if possible) on different quantum computers.

4.5.4 Fidelity and Expectation Value, p = 1 and p = 2

In this section we want to analyze the effect of the parameter p. In particular, we are interested
in the trade-off between better approximation quality but longer circuits that come with
higher values of p.
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Figure 4.20: Fidelity (upper plots) and expectation value (lower plots) vs. transpilation method for
example1p1. On the left we have p = 1 and on the right p = 2. Every dot stems from one of 75
transpilation seeds.

For the simplest example that we consider (i.e. example1p1) we see in Figure 4.20 that choosing
p = 2 gives a better result (in terms of a lower expectation value). In theory this is expected,
compare the dashed lines in the two lower plots. However, in practice on real quantum computers
the deeper circuits for p = 2 could be a problem, but for the example at hand the circuits are
shallow enough so that we don’t run into problems when executing them on ibmq_ehningen. This
will change in the next examples.
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Figure 4.21: Fidelity (upper plots) and expectation value (lower plots) vs. transpilation method for
example1p2. On the left we have p = 1 and on the right p = 2. Every dot stems from one of 75
transpilation seeds.

Already for example1p2 we see in Figure 4.21 that the trade-off between better theoretical solution
and practical result speak rather in favor of p = 1. For this choice we get more certainly a solution
with a good expectation value. Choosing p = 2 might give a better solution but looking at the high
variance this is pretty uncertain.
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Figure 4.22: Fidelity (upper plots) and expectation value (lower plots) vs. transpilation method for
example1p3. On the left we have p = 1 and on the right p = 2. Every dot stems from one of 75
transpilation seeds.

For example1p3 the situation is clear: The QAOA circuits for p = 2 are too deep for ibmq_ehningen
so that no meaningful result can be obtained, see Figure 4.22.

4.5.5 Number CNOT Gates vs. Fidelity

Next, we present figures showing the dependence of the fidelity that the circuit achieved with the
number of CNOT gates in the circuit.
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Figure 4.23: Fidelity vs. number of CNOT gates for example1p1 for different transpilations and
p = 1 (left plots) as well as p = 2 (right plots). Every dot stems from one of 75 transpilation seeds.

Comparing the left and the right plots (i.e. comparing p = 1 and p = 2) we see that circuits with
more CNOT gates give (in general) results with a lower fidelity. Moreover, we see in the top plots
that for the standard transpilation we don’t have the expected decrease in fidelity when increasing
the number of CNOTs. In particular, in the top right plot we see the best results for a medium
number of CNOT gates and a very poor quality for the lowest number of CNOTs. The explanation
is probably that the standard transpilation method is not aware of all kinds of errors that
appear in a quantum device and thus did not choose the best qubits. A hint in this direction is
also the remarkable fact that for the circuits with dynamical decoupling the fidelity stays nearly
constant for the range of number of CNOT gates appearing in the examples here. It seems that
dynamical decoupling removed the errors that spoiled the quality for the top plots.

For example1p2 and example1p3 below we make the same observations, but additionally observe
that dynamical decoupling and measurement error mitigation are not sufficient to remove all appear-
ing errors, see the plots with CNOT range between 40 and 150. (One reason might be cross-talk
between the qubits). For examples with more than 200 CNOT gates we don’t get a meaningful
solution.
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Figure 4.24: Fidelity vs. number of CNOT gates for example1p2 for different transpilations and
p = 1 (left plots) as well as p = 2 (right plots). Every dot stems from one of 75 transpilation seeds.

Figure 4.25: Fidelity vs. number of CNOT gates for example1p3 for different transpilations and
p = 1 (left plots) as well as p = 2 (right plots). Every dot stems from one of 75 transpilation seeds.

Example1p3: Different Dates

As mentioned above the error rates of quantum computers change significantly over time. The effect
on the quality of our results is clearly visible in Figure 4.26.
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Figure 4.26: Fidelity vs. number of CNOT gates for example1p3 for p = 1. The circuits for upper
left plot were run on 2022/09/01, for the upper right on 2022/09/02 and for the lower plot on
2022/09/05. Every dot stems from one of 75 transpilation seeds.

We end this notebook with results from Example Series 2.

4.5.6 Fidelity and Expectation Value, p = 1 and p = 2

For all examples of Example Series 2 we are in regimes of number of CNOT gates that are too
high for current quantum computers. Thus, we see poor fidelities and expectation values that stay
bounded away from an exact simulation and also from the exact solution.
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Example2p1

Figure 4.27: Fidelity (upper plots) and expectation value (lower plots) vs. transpilation method for
example2p1. On the left we have p = 1 and on the right p = 2. Every dot stems from one of 75
transpilation seeds.
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Example2p4

Figure 4.28: Fidelity (upper plots) and expectation value (lower plots) vs. transpilation method for
example2p4. On the left we have p = 1 and on the right p = 2. Every dot stems from one of 75
transpilation seeds.

4.6 Remarks on Implementation

All experiments in this notebook were run using the following package versions:

• mthree==1.0
• qiskit==0.37
• qiskit_aer==0.10.4
• qiskit_terra==0.21.0
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Example penalty % QAOA parameters

example1p1, p = 1 % = 3.1 β0 = 0.86470653, γ0 = −0.31959353
example1p2, p = 1 % = 3.5 β0 = 0.70449479, γ0 = 4.48896374

example1p3, p = 1 % = 1.3 β0 = 2.48199357, γ0 = 4.86664818

example1p1, p = 2 % = 3.2 β0 = 1.50891553, γ0 = 2.59570247
β1 = 2.37353917, γ1 = 2.3102415

example1p2, p = 2 % = 3.6 β0 = 3.99890724, γ0 = 6.11303759
β1 = 2.72012026, γ1 = 1.75840967

example1p3, p = 2 % = 1.6 β0 = 0.48954047, γ0 = 1.98033881
β1 = 0.9098274, γ1 = 3.92848365

example2p1, p = 1 % = 5.7 β0 = 0.48207365, γ0 = 6.11153126

example2p4, p = 1 % = 3.1 β0 = 2.77112559, γ0 = 0.02398761

example2p1, p = 2 % = 5.5 β0 = 1.60523831, γ0 = 0.08836239
β1 = 3.88382278, γ1 = 6.19852592

example2p4, p = 2 % = 3.3 β0 = 1.50645202, γ0 = 5.76044569
β1 = 3.84358483, γ1 = 3.7570749

Table 4.1: Parameters for the experiments in Section 4.5.

For the experiments in Section 4.5 we used the parameters given in Table 4.1.
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Appendix A

Properties of ibmq_ehningen

The following properties are from November, 11, 2022.

Figure A.1: Coupling map of ibmq_ehningen.

Figure A.2: Error map of ibmq_ehningen.
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Figure A.3: X and
√
X errors of ibmq_ehningen.

Figure A.4: CNOT errors of ibmq_ehningen.
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Appendix B

Codes of Helper Functions

Code for codes_notebook_1.py:

from typing import List, Union
import numpy as np
from qiskit_optimization import QuadraticProgram
from qiskit_optimization.converters import QuadraticProgramConverter,␣
↪→LinearEqualityToPenalty, IntegerToBinary

from qiskit_optimization.algorithms import CplexOptimizer

## --- Codes from Notebook 1 --- ##

class Car:
def __init__(

self,
car_id: str, # an arbitrary name for the car
time_slots_at_charging_unit: List[int], # time slots when the car is at␣

↪→the charging unit
required_energy: int # energy units that should be charged

) -> None:
self.car_id = car_id
self.time_slots_at_charging_unit = time_slots_at_charging_unit
self.required_energy = required_energy

def __str__(self) -> str:
return f"Car '{self.car_id}':\n" \

f" at charging station at time slots {self.
↪→time_slots_at_charging_unit}\n" \

f" requires {self.required_energy} energy units"

class ChargingUnit:
def __init__(

self,
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charging_unit_id: str, # an arbitrary name for the charging unit
number_charging_levels: int,
number_time_slots: int,

) -> None:
self.charging_unit_id = charging_unit_id
self.number_charging_levels = number_charging_levels
self.number_time_slots = number_time_slots
self.cars_to_charge = []

def __str__(self) -> str:
info_cars_registered = ""
for car in self.cars_to_charge:

info_cars_registered = info_cars_registered + " " + car.car_id
return "Charging unit with\n" \

" charging levels: " + str(list(range(self.
↪→number_charging_levels)))[1:-1] + "\n" \

" time slots: " + str(list(range(self.number_time_slots)))[1:-1] +␣
↪→"\n" \

" cars to charge:" + info_cars_registered

def register_car_for_charging(self, car: Car) -> None:
if max(car.time_slots_at_charging_unit) > self.number_time_slots - 1:

raise ValueError("From car required time slots not compatible with␣
↪→charging unit.")

self.cars_to_charge.append(car)

def reset_cars_for_charging(self) -> None:
self.cars_to_charge = []

def generate_constraint_matrix(self) -> np.ndarray:
"""Matrix with ones for times when car is at charging station
and with zeros if car is not at charging station"""

number_cars_to_charge = len(self.cars_to_charge)
constraint_matrix = np.zeros(

(number_cars_to_charge, number_cars_to_charge*self.
↪→number_time_slots))

for row_index in range(0, number_cars_to_charge):
offset = row_index*self.number_time_slots
cols = np.array(self.cars_to_charge[row_index].

↪→time_slots_at_charging_unit)
constraint_matrix[row_index, offset+cols] = 1

return constraint_matrix

def generate_constraint_rhs(self) -> np.ndarray:
"""Vector with required energy as entries"""
number_cars_to_charge = len(self.cars_to_charge)
constraint_rhs = np.zeros((number_cars_to_charge, 1))
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for row_index in range(0, number_cars_to_charge):
constraint_rhs[row_index] = self.cars_to_charge[row_index].

↪→required_energy
return constraint_rhs

def generate_cost_matrix(self) -> np.ndarray:
number_cars_to_charge = len(self.cars_to_charge)
return np.kron(

np.ones((number_cars_to_charge, 1)) @ np.ones((1,␣
↪→number_cars_to_charge)),

np.eye(self.number_time_slots))

def generate_qcio(
charging_unit: ChargingUnit,
name: str=None

) -> QuadraticProgram:
if name is None:

name = ""
qcio = QuadraticProgram(name)

for car in charging_unit.cars_to_charge:
qcio.integer_var_list(

keys=[f"{car.car_id}_t{t}" for t in range(0, charging_unit.
↪→number_time_slots)],

lowerbound=0,
upperbound=charging_unit.number_charging_levels-1,
name="power.")

constraint_matrix = charging_unit.generate_constraint_matrix()
constraint_rhs = charging_unit.generate_constraint_rhs()
for row_index in range(0, constraint_matrix.shape[0]):

qcio.linear_constraint(
linear=constraint_matrix[row_index, :],
rhs=constraint_rhs[row_index][0],
sense="==",
name=f"charge_correct_energy_for_{charging_unit.

↪→cars_to_charge[row_index].car_id}")

cost_matrix = charging_unit.generate_cost_matrix()
qcio.minimize(quadratic=cost_matrix)

return qcio

class Converter(QuadraticProgramConverter):
def __init__(

self,
penalty: float=None # the penalty paramter for step 1
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) -> None:
super().__init__()
self._penalty = penalty
self.linear_equality_to_penalty_converter =␣

↪→LinearEqualityToPenalty(penalty)
self.integer_to_binary_converter = IntegerToBinary()

def convert(self, quadratic_program: QuadraticProgram) -> QuadraticProgram:
return self.integer_to_binary_converter.convert(

self.linear_equality_to_penalty_converter.convert(quadratic_program))

def interpret(self, x: Union[np.ndarray, List[float]]) -> np.ndarray:
return self.linear_equality_to_penalty_converter.interpret(

self.integer_to_binary_converter.interpret(x))

## --- Example for Notebook 2 --- ##

def generate_example():
charging_unit = ChargingUnit(

charging_unit_id="charging_unit",
number_charging_levels=4,
number_time_slots=4)

car_green = Car(
car_id="car_green",
time_slots_at_charging_unit=[0, 1, 2],
required_energy=4)

charging_unit.register_car_for_charging(car_green)

qcio = generate_qcio(charging_unit, name="QCIO")
converter = Converter(penalty=3.6)
qubo = converter.convert(qcio)
number_binary_variables = qubo.get_num_binary_vars()

cplex_optimizer = CplexOptimizer()
qubo_minimization_result = cplex_optimizer.solve(qubo)

return charging_unit, car_green, qcio, converter, qubo,␣
↪→number_binary_variables, qubo_minimization_result

Code for codes_notebook_2.py:

from qiskit.circuit.library.n_local import QAOAAnsatz
from codes_notebook_1 import generate_example as generate_example_notebook_1
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def generate_example():
charging_unit, car_green, qcio, converter, qubo, number_binary_variables,␣

↪→qubo_minimization_result = generate_example_notebook_1()

ising, ising_offset = qubo.to_ising()

qaoa_reps = 2
qaoa_circuit = QAOAAnsatz(cost_operator=ising, reps=qaoa_reps)
qaoa_circuit.measure_all()

return charging_unit, car_green, qcio, converter, qubo,␣
↪→number_binary_variables, qubo_minimization_result, ising, ising_offset,␣
↪→qaoa_reps, qaoa_circuit

Code for utils.py:

from typing import Union, List
import numpy as np
from datetime import datetime
from pathlib import Path
import pickle
import plotly.graph_objects as go
from qiskit.circuit import QuantumCircuit

def plot_charging_schedule(
charging_unit,
minimization_result_x,
marker_size=50,

) -> go.Figure:
marker_colors = ["green", "orange", "blue", "red", "magenta",␣

↪→"goldenrod"]
time_slots = np.arange(0, charging_unit.number_time_slots)
fig = go.Figure()
already_in_legend = []
for t in time_slots:

offset = 0
for car_num in np.arange(0, len(charging_unit.cars_to_charge)):

car_id_current_car = charging_unit.cars_to_charge[car_num].car_id
minimization_result_x_current_car = minimization_result_x[

car_num*charging_unit.number_time_slots:
↪→(car_num+1)*charging_unit.number_time_slots]

power_t = minimization_result_x_current_car[t]
fig.add_trace(go.Scatter(

x=[t+0.5]*int(power_t),
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y=offset + np.arange(0, power_t),
mode="markers",
marker_symbol="square",
marker_size=marker_size,
marker_color=marker_colors[car_num],
name=car_id_current_car,
showlegend=False if car_id_current_car in already_in_legend␣

↪→else True
))
offset += power_t
if power_t > 0:

already_in_legend.append(car_id_current_car)

fig.update_xaxes(
tick0=1,
dtick=1,
range=[0.01, charging_unit.number_time_slots],
tickvals=np.arange(0.5, charging_unit.number_time_slots),
ticktext=np.arange(0, charging_unit.number_time_slots),
title="time slot",
title_font_size=12,

)
fig.update_yaxes(

range=[-0.6, charging_unit.number_charging_levels-1],
tickvals=np.arange(-0.5, charging_unit.number_charging_levels-0.5),
ticktext=np.arange(0, charging_unit.number_charging_levels),
title="charging level",
title_font_size=12,
zeroline=False

)
return fig

def convert_to_date_and_time_string(time_stamp: Union[datetime, str]):
if isinstance(time_stamp, datetime):

output = str(time_stamp.year) + "_" + \
str(time_stamp.month).rjust(2, '0') + "_" + \
str(time_stamp.day).rjust(2, '0') + "-" + \
str(time_stamp.hour).rjust(2, '0') + "h" + \
str(time_stamp.minute).rjust(2, '0') + "m"

elif isinstance(time_stamp, str):
output = time_stamp[0:17].replace('-', '_').replace('T', '-').

↪→replace(':', 'h', 1).replace(':', 'm', 1)
else:

raise ValueError("data type of 'time_stamp' not supported")
return output

def save_token(token: str, file_name: str):
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path_token_file = Path(file_name).with_suffix(".pickle")
if path_token_file.exists():

print("Token already saved.")
else:

with open(path_token_file, 'wb') as file:
pickle.dump(token, file)

print(f"Token has been saved in '{file_name}.pickle'.")

def load_token(file_name: str):
path_token_file = Path(file_name).with_suffix(".pickle")
try:

with open(path_token_file, 'rb') as file:
token = pickle.load(file)

except FileNotFoundError:
raise FileNotFoundError("Token has not been saved. Use the function␣

↪→save_token to to save your token.")
print("Token loaded.")
return token

def count_gates(
quantum_circuit: QuantumCircuit,
gates_to_consider: List[str]

) -> int:
result = 0
for gate in gates_to_consider:

try:
count_gate = quantum_circuit.count_ops()[gate]

except KeyError:
count_gate = 0

result = result + count_gate
return result
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